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Three-dimensional finite element analysis of lined tunnels
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SUMMARY

This paper describes finite element procedures that have been developed to model the ground movements
that occur when a shallow tunnel is installed in a clay soil. This study is part of a wider project concerned
with the development of new methods to predict the likely extent of damage to surface structures caused by
nearby shallow tunnelling. This particular paper, however, is concerned only with the numerical model of
tunnel installation. The structural liner is an important component of this tunnel installation model; two
different ways of modelling the liner (based on continuum elements and shell elements) are discussed in the
paper. A test problem consisting of the installation of a lined tunnel in an elastic continuum is used to
investigate the merits of these different approaches. When continuum elements are used to model the liner,
the numerical results agree well with an analytical solution to the problem, When shell elements are used to
model the liner, however, the results were found to be significantly influenced by the particular formulation
adopted for the shell elements. Example analyses, involving incremental tunnel construction in a clay soil
where the soil is modelled using a kinematic hardening plasticity model, are described. These analyses
confirm that a thin layer of continuum elements may be used, satisfactorily, to model tunnel linings in
a soil-structure interaction analysis of this sort. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There is increasing interest and activity in the construction of road or rail tunnels in urban areas
for the improvement of transportation infrastructure. These tunnels are generally relatively
shallow and there is, therefore, a risk that ground movements occurring during construction may
cause damage to existing buildings on the soil surface.

Current design methods for the assessment of buildings at risk of settlement-induced damage
are often based on a two-stage process. In this procedure an assessment of likely surface
settlements at an equivalent ‘greenfield’ site (where buildings are absent) is first carried out,
usually by means of a semi-empirical approach [1]. Secondly, the effect of these settlements is

* Correspondence to: C.E. Augarde, Department of Engineering Science, University of Oxford, Parks Road, Oxford,
0OX1 3PJ, UK.
T E-mail: charles:augarde@eng.ox.ac.uk

Received 11 January 2000
Copyright © 2001 John Wiley & Sons, Ltd. Revised 10 August 2000



244 C. E. AUGARDE AND H. I. BURD

assessed by applying them to structural models of any nearby buildings to estimate the likely
extent of any damage. This procedure neglects the important effect that the building’s own
stiffness and weight has on the shape and magnitude of the settlement profile and it is well
accepted that this may lead to inaccurate predictions.

The alternative of using numerical analysis to study this problem has the advantage that, in
principle, the building and the tunnelling process can be included in a single model; interaction
effects between the building and the soil are therefore specifically included in the analysis. These
interaction mechanisms are highly complex, however, and can only be modelled in detail using
three-dimensional procedures [2-4]. Much of the previous numerical modelling of this problem,
however, has been based on two-dimensional models [5-7] which lead naturally to problems of
reduced complexity. Continuing developments in computer hardware and numerical algorithms
for the solution of large systems of linear equations, however, mean that three-dimensional
numerical studies of this problem are now becoming a realistic practical possibility [8].

This paper describes some of the development work that has been carried out on a three-
dimensional finite element model to assess the extent of likely damage caused to a masonry
structure on the soil surface by nearby shallow tunnelling procedures [2-4]. This model is
capable of investigating problems of the sort illustrated in Figure 1 in which a tunnel is
incrementally installed beneath an existing masonry building. The soil is modelled using tetrahed-
ral elements, shell or tetrahedral elements arc used to model the tunnel lining and the building
consists of sets of interconnected facades of plane stress elements. This paper describes the
procedures used to model tunnel installation procedures and discusses the relative merits of using
shell and tetrahedral continuum elements for the lining. Modelling procedures for the building
[3,4] and for the non-linear behaviour of the soil [9] are described elsewhere and are beyond the
scope of this paper.

2. MODELLING AN EMBEDDED TUNNEL LINING

The tunnel liner in this numerical model consists of a thin circular elastic tube embedded in the
soil. A choice exists between two different approaches that may be used to model this liner. One

2d elements
tunnel to be ™ with masonry
excavated T material model
in building
3d elements
with non-
linear soil tunnel lining modelled with
model elastic shell or tetrahedral

continuum elements

Figure 1. Example analysis of a building, soil and tunnelling process.
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possibility is to use a thin layer of continuum elements. The other possible approach would be to
use an appropriate shell element formulation (of which there are many) to model the liner. These
two approaches are reviewed below.

2.1. Modelling the liner with continuum elements

The use of continuum elements to model the liner, as well as the soil, raises two important
objections [10,11]. Firstly, more degrees-of-freedom are generally required than for an alternative
approach in which specially formulated shell elements are used. This objection does not have any
substance for the current problem, however, as the number of degrees-of-freedom used to model
the tunnel liner is a small fraction of the number of degrees-of-freedom required to describe the
complete problem. The second objection is that it inevitably involves the use of relatively stiff
elements that have poor geometric conditioning [117]; this leads to an increased difference
between the largest and smallest magnitude terms in the structure stiffness matrix. This increased
range of magnitude of terms in the stiffness matrix tends to make the solution to the system of
equations more susceptible to truncation and round-off errors occurring during the solution
process. This increased susceptibility to numerical errors is referred to as “ill-conditioning’ and is
generally associated with a large value of the condition number of the stiffness matrix. It is,
however, far from straightforward in practice to discover whether any particular set of equations
are ill-conditioned; indeed Neto [12] shows that a relatively large value of condition number is
not, in itself, necessarily an indication of ill-conditioning. Truncation and round-off errors,
however, can be reduced (at least in principle) by the use of higher precision arithmetic. The errors
may also be sensitive to details of the solution process, such as the order in which the stiffness
equations are assembled and solved.

In principle therefore, provided that any potential difficulties caused by ill-conditioning and
round-off errors can be identified and dealt with, the use of conventional continuum elements
would seem to be a reasonably practical way of modelling embedded tunnel liners. The use of
conventional three-dimensional continuum elements has the further important advantage that
numerical difficulties associated with the use of specially formulated shell elements (see below) are
avoided.

In the analyses described in this paper, the soil is modelled using 10-noded tetrahedral
elements. These elements have the important advantage for soil modelling that they are of
a sufficiently high order to allow accurate modelling of incompressible material behaviour as
would occur, for example, in a problem involving undrained soil behaviour [13]. Since the strain
variation within these elements is linear, a single thin layer of elements, when used to model the
tunnel liner, should provide a reasonable representation of the stress variations associated with
both shell bending and membrane action.

2.2. Modelling the liner with shell elements

A variety of shell element formulations are proposed in the current literature; Yang et al. [14], for
example, review over 280 relevant publications. Many of these formulations are highly complex
because of the need to satisfy C! continuity at the element boundaries. These formulations may be
grouped in two broad categories as described below.

2.2.1. Curved shell elements. Curved shell elements may be formulated directly by using a
suitable shell theory. Formulations based on this approach generally require multiple
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degrees-of-freedom at nodes. Some of these terms relate to high-order displacement derivatives
and this can lead to conflicts because of their dependence on other lower-order terms, which are
also degrees of freedom [15]. These conflicts may significantly reduce the accuracy and conver-
gence performance of the element. An alternative approach is to start from the conventional
isoparametric approach that is used for solid hexahedral elements. The displacement degrees of
freedom at the element nodes are expressed in terms of translation and rotation degrees-of-
freedom for an element with the same geometry but with a reduced number of nodes. Elements
formulated in this way are often termed ‘degenerated solid continuum elements’. This approach
might typically be used to obtain an 8-noded shell element from a 20-noded isoparametric
continuum element.

Curved shell elements have obvious appeal that they are able to model closely the geometry of
a curved shell. They suffer from the important disadvantage, however, in that spurious coupling
may exist between the membrane and bending response of the element. Since shell elements
usually have a large membrane stiffness and a relatively small flexural stiffness, this coupling can
lead to meshes in which the bending stiffness of the shell elements is artificially increased to
unacceptably high levels. This phenomenon (known as ‘membrane locking’) is conventionally
dealt with by various numerical procedures, including the use of reduced or selective integration,
in the computation of the element stiffness matrix.

2.2.2. Faceted shell elements. Faceted shell elements consist of one, or more, plane facets.
Elements of this sort have the important advantage that bending and membrane effects are
uncoupled within each facet and this reduces the complexity of the formulation. This lack of
coupling also avoids the problems associated with ‘membrane locking’. Faceted formulations,
however, are clearly unable to model the detailed geometry of a curved shell. No clear consensus
yet appears to have emerged as to whether the advantages of this simpler formulation approach
outweigh this disadvantage [10,16].

In most formulations of faceted elements, separate formulations must be selected for flexural
and membrane behaviour. The membrane component is usually based on a conventional, plane
stress, Lagrangian continuum element. Formulations for the flexural behaviour, however, require
special consideration of the rotational degrees-of-freedom at the nodes. Simple formulations for
flat bending elements (or plate elements) are based on three degrees-of-freedom at each node: one
out-of-plane displacement and two rotations, as shown in Figure 2. A complete set of three
rotational degrees-of-freedom per node is required, however, to formulate faceted shell elements
that can be connected together to form a curved three-dimensional surface. This requires the
introduction of a rotational degree-of-freedom (often referred to as the ‘drilling degree of

0
e‘lx le 3 f/"zy
\ \92)(
ol 1
0, VX
P 0.
3 3x
63y o

Figure 2. Degrees of freedom for flat-plate element.
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freedom’) in a direction normal to the element. Several formulations of membrane elements that
include drilling degree of freedom stiffness terms [17-197 have been proposed and these could be
used within a shell element formulation. Alternatively, a fictitious drilling degree-of-freedom
stiffness can be placed in the element stiffness matrix [207].

A novel faceted element formulation is described by Phaal and Calladine [15]. This element is
formulated in terms of displacement degrees of freedom only and as a consequence the drilling
degree of freedom issue described above does not arise. The absence of rotational degrees of
freedom also makes it attractive for use in problems where shell elements are combined with
conventional displacement continuum elements.

2.3. Choice of element for the tunnel lining

This paper describes analyses carried out using a variety of approaches to modelling the tunnel
liner. Some analyses were carried out using a thin layer of continuum elements to model the liner,
and in the other calculations the liner was modelled using shell elements.

Two types of shell element are investigated. One of these is the faceted shell formulation
proposed by Phaal and Calladine [15]. This element has been implemented in the finite element
program OXFEM [2-4] that has been developed at Oxford University for the analysis of three-
dimensional problems in geotechnical engineering. Test analyses have also been carried out, using
the commiercial program ABAQUS [21], in which an alternative shell element formulation is
used for the liner,

The Phaal and Calladine element is based on the use of overlapping displacement fields; this
formulation is reviewed briefly below. The curved shell element used in the ABAQUS analyses
(referred to in ABAQUS [21] documentation as STRI65) is based on curved thin shell theory.
This element is formulated in terms of three displacements and two rotations at each node.
Additional fictitious stiffness terms associated with the ‘drilling degree-of-freedom’ are included
to avoid the possibility of a singular stiffness matrix for the case where elements connected to any
node lie in the same plane. A reduced integration scheme is used to avoid the possibility of
‘membrane locking’.

3. THE PHAAL AND CALLADINE [15] ELEMENT

The Phaal and Calladine element consists of four plane facets, defined by the positions of
six nodes, as shown in Figure 3(a). The membrane terms in the element stiffness matrix
are obtained by assembling the individual stiffness matrices of conventional three-noded
plane stress elements corresponding to each facet. The formulation for the flexural terms is
more complex, however, and is based on a mesh of layers of overlapping elements (Figure 3(b)).
The use of overlapping elements in this way allows for C! continuity without the need to
introduce rotational degrees-of-freedom at the nodes. It does, however, lead to additional
complexities in the formulation, particularly in the implementation of the boundary
conditions. The formulation adopted for the flexural behaviour may be understood by
taking a formulation for a flat plate element as a starting point. Phaal and Calladine propose
a simple mechanical analogy for this plate element (consisting of rigid facets and rotational
springs); this mechanical analogy is then used to develop a formulation for a curved version of this
element.
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Figure 3. (a) Phaal & Calladine shell element [15]. (b) Mesh of overlapping shells.
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Figure 4. (a) Lagrangian plate element. (b) Overlapping mesh of Lagrangian plate element.

The formulation for the flexural behaviour of the shell element starts from a planar six-noded
element (Figure 4(a)). This element is defined in terms of out-of-plane degrees of [reedom only and
conventional Lagrangian interpolation polynomials are used to relate the nodal displacements to
the element curvatures. These elements may be assembled to form a mesh in which C! continuity
is ensured by overlaying them, as shown in Figure 4(b). This procedure is a development of an
approach described by Zienkiewicz and Morgan [22], who show that a mesh of overlaid one-
dimensional Lagrangian elements leads to stiffness equations that are identical to those that
would be obtained from a finite difference analysis of a beam.

Phaal and Calladine show that the same stiffness matrix for the six-noded flat plate element
may be derived using a mechanical model consisting of four rigid facets connected together with
three rotational springs of a suitable stiffness (Figure 5(a)). This mechanical model is significant
because it may then be used to derive a curved element as described below.

The curved version of the mechanical shell model is developed by considering a faceted element
in which the facets are connected together, at appropriate angular orientations, along the lines of
the three rotational springs, as shown in Figure 5(b). The flexural behaviour of the element is
described in terms of displacements at each node in a direction normal to each facet. (Note that
nodes 1,2,3 have associated with them a single nodal displacement in a direction normal to the
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Figure 5. (a) Mechanical model of plate element. (b) Mechanical model of shell element.

connected facet. Nodes 4,5, and 6 have nodal displacements in three different directions asso-
ciated with them because the three connecting facets will, generally, have normals in different
directions). These 12 displacement degrees-of-freedom need to be expressed in terms of the 18
degrees-of-freedom (three per node) that are used to define the complete element. The procedures
used to achieve this are described by Phaal and Calladine [15] and are not discussed further
here.

Since the elements have no rotational degrees of freedom, special procedures are required to
specify boundary rotations that are free or fixed. The approach proposed by Phaal and Calladine,
and adopted in the formulation used for these analyses, is to modify the flexural terms in the
stiffness matrices of elements at the edge of the mesh to specify the appropriate rotational
boundary condition. Modifications are not required for the membrane stiffness terms. These
procedures require special measures to be taken during mesh generation (to identify edge
elements) and the stiffness matrix formation. The complexity of these procedures is regarded as
a major disadvantage of this element.

4. TUNNELLING THROUGH AN ELASTIC MEDIUM

4.1. Test analyses

To investigate the performance of different procedures to model an embedded tunnel liner, a set of
test analyses was carried out of the installation of a deep tunnel through a prestressed, elastic
medium with no self-weight. This is a plane strain problem and so it does not involve bending
along the tunnel axis. The problem does, however, have an analytical solution [22] and is
therefore useful for testing purposes. Three meshes of different refinement were used in the
study.

These test analyses were concerned with a tunnel installed in a cubic block of ground with sides
of length 24R. The three meshes used in the analyses are shown in Figure 6(a). For analyses where
continuum elements were used to model the liner a layer of continuum elements of thickness 0.1R
was included as shown in Figure 6(b). For analyses where the shells were used to model the liner
this thin ring of continuum elements was removed and replaced by shell elements. The numbers of
elements used in each analysis are given in Tables I and II. One-quarter of the whole problem was
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Figure 6. (a) Finite element mesh for tunnel installation in weightless elastic medium.
(b) Tunnel liner details.

Table I. Mesh details for analyses of tunnelling through an elastic medium.

Mesh No. of soil No. of elements No. of continuum  No. of shell
elements within excavated elements to model elements
volume liner (when present) (when present)
A 1263 222 296 376
B 3676 408 1025 960
C 6241 1325 1528 1905

modelled to take advantage of symmetry. Symmetric (zero rotation) boundaries for the overlap-
ping shell elements were specified along both longitudinal edges of the tunnel lining mesh. Initial
vertical and horizontal compressive stresses of ¢ and Ko were assigned to the soil at the start of
the analysis. In the results presented here, K was 0.8 and the soil Poisson’s ratio was 0.49 (selected
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Table II. Specification of analyses of tunnelling through an elastic medium.

Run Mesh No. of elements No. of nodes Lining element type
clLA A 1559 2682 Continuum
cl_B B 4701 7873 Continuum
cl-C C 7769 12627 Continuum
sl_A A 1639 2179 Shell

sl_B B 4636 6312 Shell

sl-C C 8146 10325 Shell

Stiff liner Flexible liner
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0.0 ==
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041 gas
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-0.6 A A (see Table 2)
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Figure 7. Comparison between computed liner displacements and solutions of Einstein
& Schwartz [25] (springline).

to approximate an incompressible soil). Calculations were carried out with different values of
E/E, where E and E, are the Young’s moduli of the soil and the liner, respectively. The Poisson’s
ratio of the liner was 0.25.

Excavation was modelled by removal of the stiffness and self-weight contributions of the
elements within the tunnel volume (these elements are not shown in Figure 6). Equilibrium on
surfaces adjacent to excavated elements was ensured by using procedures described by
Brown and Booker [23]. The implementation of these procedures is described by Augarde
et al. [24].

The computed radial displacements on the springline and invert (averaged along the length of
the tunnel) are compared with the analytical solutions of Einstein and Schwarz [25] in Figures 7
and 8. The displacements are shown in non-dimensionalized form where ¢ is radial displacement
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and r, the tunnel radius, is equal to R when the lining is modelled by shell elements and 0.95R
when modelled using continuum elements. The value of E/E, clearly has an important influence
on the liner displacements. For small values of this stiffness ratio, the liner behaves as a stiff tube
and displacements are small. For larger values of E/E,, the liner response is more flexible and
displacements are larger. The displacements obtained from the OXFEM analyses based on the
use of continuum elements to model the lining are similar to those obtained from the ABAQUS
analysis; both sets of data agree well with the analytical solution. These data show that mesh
refinement appears to have little effect on the results of the analysis when shell elements are used
to model the tunnel lining. The use of refined meshes with the continuum element approach does,
however, lead to convergence towards the analytical solution.

The results from the OXFEM analyses employing the Phaal and Calladine elements, however,
show a different pattern. Although the computed displacements show trends that are similar to
the analytical solution, the computed displacements are consistently in error by an amount that
tends to increase as the liner becomes more flexible. The pattern of results suggests that the
behaviour of the elements is over-stiff. It has already been noted that special measures are often
needed to ensure that shell element formulations do not exhibit flexural behaviour that is
excesstvely stiff. It is thought, therefore, that this particular element requires further development
before it is suitable for accurate soil-structure interaction analyses of this sort. It should be noted
in passing, however, that values of E/E, appropriate for soft ground tunnelling are likely to be in
the range 0.001-0.01, and in this range the Phaal and Calladine element appears to provide
reasonable agreement with the analytical solution.

4.2. Element conditioning

The use of continuum elements to model the tunnel lining leads to relatively long and thin
elements. The poor geometric conditioning may have an important influence on the solution,
however, as discussed in Section 2.1.

The geometric condition of a tetrahedral element may be characterized by various measures
[11]. One possible geometric condition number, ¥, is defined as

radius of largest inscribed sphere within element

v =/24) (1)

longest edge of element
where the factor \/ (24) ensures that y is unity for a regular tetrahedron. For the meshes used in
this study, the continuum elements used to model the liner have a geometric condition number of
about 0.17. To investigate whether this level of geometric ill-conditioning is likely to adversely
effect the results, the analyses c1.A and cl_C were repeated using single-precision arithmetic
(rather than the double-precision arithmetic that was used to compute the results plotted in
Figures 7 and 8) for the real variables. The results for computed springline displacements,
averaged along the length of the tunnel are compared with the equivalent double-precision
analyses in Table IH. The data show a small influence on calculation precision which is,
presumably, due to increased truncation and round-off errors in the solution procedure when
single precision arithmetic is used. It is interesting to note that the differences between the
averaged displacements tend to increase with increasing stiffness ratio E/E,. This is consistent
with the expected pattern of truncation and round-off errors increasing with increasing difference
in the stiffness of the liner and the soil. In general terms, however, the differences between the two
sets of results suggest (although this cannot be confirmed) that any round-off errors caused by
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Figure 8. Comparison between computed liner displacements and solutions of Einstein
& Schwartz [25] (invert).

Table III. Comparison of results of single and double precision analyses.

Analysis E/El Mean Std. dev. Mean Std. dev. in mean in SD
% diff. % diff.

cl_A 0.0005 0.304 0.312 0.301 0.310 1.11 0.60
0.005 1.494 0.990 1.466 1.038 1.96 — 4.64

0.05 — 7.998 0.871 —7.984 0.878 —0.18 -~ 0.77

0.5 — 38318 7.424 — 38322 7.505 0.01 —1.08

cl.C 0.0005 2.067 0.049 2.099 0.045 —1.52 722
0.005 3.940 0.221 3.964 0.215 - 0.60 2.64

0.05 — 7.088 0.346 —7.085 0.347 —0.04 —0.16

0.5 — 38.780 0.594 — 38.792 0.595 0.03 —0.24

poor geometric conditioning of the elements used to model the liner are minimal in the double
precision analyses.

5. MODELLING TUNNEL INSTALLATION

In any practical tunnel construction the volume of soil actually excavated is larger than the final
tunnel volume. This difference in volume is conventionally referred to as ‘ground loss’. To model
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real tunnel construction processes, therefore, it is necessary to develop a means of incorporating
ground loss within the numerical analysis. In an ideal case the ground loss would be zero; in
practice, however, values of ground loss of between 1 and 2 per cent (expressed in terms of the
final tunnel volume) are typical. (Note that these values are dependent on the method of tunnel
installation used and the quality of workmanship. In practice, ground loss values in excess of 2
per cent may occur.) The simulation of tunnel installation, including the effects of ground loss, is
carried out in this numerical model as follows.

Excavation of material within the tunnel. This is carried out using the procedures described for
the analyses in Section 4.

Activation of the lining. Lining elements in a previously generated mesh are activated.

Application of the required amount of ground loss. This is achieved by numerical shrinkage of the
liner elements. These procedures are described in more detail below.

5.1. Modelling ground loss

Two important features of ground loss need to be considered; (a) loss associated with ground
moving into the tunnel at the face (termed face loss) and (b) loss caused by radial movement of the
soil prior to placement and grouting of the lining (termed tail loss). Face loss, in principle, is
automatically included in the model since the numerical procedure includes the possibility of
movements at the tunnel face. In practice these movements are often controlled using slurry shield
or earth pressure balance techniques. Although these construction techniques are not included in
the model described in this paper they could be incorporated by using suitable numerical
procedures. Tail loss (which is usually more significant than face loss), needs to be specifically
included in the analysis.

Three separate numerical procedures to model tail loss may be identified from previous work in
this area. Bakker et al. [26] and El-Nahhas et al. [27], for example, use a two-dimensional
approach in which beam elements (to model the lining) are connected to the mesh of contintium
elements used to model the soil. To develop a specified amount of ground loss, the liner elements
are simply subjected to a specified amount of circumferential shrinkage. An alternative two-
dimensional approach is described by Addenbrooke and Potts [6], in which element removal
within the tunnel volume is carried out in increments without including a specific model for the
liner. At the end of each increment the volume loss is computed and, when it reaches the desired
value, the calculation is simply terminated. A more complex approach is described by Rowe [28]
in which separate unconnected meshes are adopted for the soil and the liner. The geometry of the
liner mesh is devised so that the difference between the excavated area, and the area enclosed by
the liner elements, is equal to the required amount of ground loss. During tunnel installation
a soil-lining interaction formulation is used to model the closure of the ground onto the
tunnel.

The methods described above have been implemented in two-dimensional analysis. Little work
appears to have been done, however, on their possible extension to three-dimensional analysis.
The extension of the ‘shrinkage method’ of Bakker et al. [26] and El-Nahhas et al. [27] and the
‘partial unloading’ method of Addenbrooke and Potts [6] to three dimensions would seem to be
relatively straightforward. The interaction approach adopted by Rowe [287 appears to provide
a more realistic model, but it would be highly complex to formulate in three dimensions. The
tunnelling model described here was developed for the purpose of investigating surface settle-
ments, and consequential damage to surface structures caused by tunnelling. Since for these
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calculations a detailed study of liner performance was not required, it was thought that a relative-
ly simple ground loss model would be acceptable. Accordingly a procedure similar to the
shrinkage model described above was adopted. Although this procedure does not model the
detailed soil-structure interaction in the neighbourhood of the tunnel, it does allow specified
amounts of ground loss to be developed.

Shrinkage of the tunnel lining is achieved by applying an appropriate set of nodal forces to the
tunnel lining. These forces are calculated on an element-by-element basis. For shell elements, the
required nodal forces are obtained from a conventional virtual work approach to give

f.. = J B™De, d4 (2)
4

where B is the strain~displacement matrix, D is the material constitutive matrix element and ¢, is
the vector of strain components that correspond to the required amount of hoop shrinkage within
the lining. A similar approach is used for continuum liner elements but the integration is carried
out over the volume of each element. Since the liner is elastic, these forces do not modify the
behaviour of the liner although they do lead to additional hoop stresses that have no physical
significance.

6. EXAMPLE TUNNELLING ANALYSES

A set of example analyses have been carried out using OXFEM to illustrate the use of this
tunnelling model. Two of these analyses were based on a lined tunnel and the third on an unlined
tunnel. Details of these analyses are given below.

6.1. Soil model

The soil model was based on an elastic-plastic approach in which the plastic behaviour was
modelled by multiple kinematic hardening yield surfaces. Stiffness and strength were specified to
increase with depth. This soil material was developed to model the small strain non-linearity that
is known to have an important influence on the response of overconsolidated soils [9]. Non-
linearity of the small strain response is achieved using a number of nested von Mises surfaces
which translate according to a linear hardening model. The model includes an outer von Mises
bounding surface. The initial shear modulus at the surface of the mesh, G, was 30000 kPa and the
increase with depth was 3000 kPa/m. Figure 9 shows the variation in shear modulus with shear
strain for a point at a depth of 10 m from the surface with this material model. A value of 0.8 was
adopted for K,. Undrained behaviour was approximated by setting Poisson’s ratio, v = 0.49. The
initial stresses in the soil were determined by taking the bulk unit weight of the soil to be
20 kN/m? and assuming the water table to lie at the surface. A Young’s modulus of 30 kN/m? and
Poisson’s ratio of 0.2 were used for the lining; these are consistent with the values normally
assumed for reinforced concrete. The membrane and flexural properties for the lining were
derived from these values and an assumed thickness of 250 mm.

6.2. General arrangement for the analyses

In all analyses, the tunnel axis was straight, horizontal and at a depth of 10 m and the tunnel
inside radius was 2.5 m. The mesh (in which the symmetry of the problem is exploited) is shown in
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Figure 9. Variation of shear modulus with shear strain.

Figure 10. Finite element mesh used for example tunnelling analysis.

Figure 10 and the three analyses are specified in Table IV. Details of the way in which the lining
(where present) was modelled follows a similar pattern to that shown in Figure 6{(b) with
R = 2.5 m. For the analysis in which the liner was modelled using continuum elements (CL) an
elastic model with the appropriate liner properties was assigned to a 0.25 m thick layer of
tetrahedral elements around the tunnel perimeter. For the unlined analysis (UL) this thin layer
was removed. In the third analysis (SL), the thin continuum element layer was absent and shell
elements were placed around the inside tunnel at a radius of 2.5 m. In analyses CL and SL the
ground loss was specified to be 1 per cent; in the unlined analysis, however, ground loss could not
be controlled. The tunnel was excavated in 10 equal stages, each 6 m long. At the end of each
analysis stage the volume of the tunnel was calculated (by a three-dimensional triangulation
within the tunnel) to calculate the amount of ground loss that was actually developed; these data
are given in Table I'V. For the lined tunnels the developed ground loss is very close to the specified
value of 1 per cent. (The difference between specified and actual ground loss is presumed to be
associated with ground loss at the tunnel face). The use of symmetrical boundary conditions on
the vertical faces of the mesh implies that another tunnel is simultaneously constructed, in the
opposite direction, to meet the final stage of the analysis. The effect of this is to slightly
over-estimate the settlements as the tunnel reaches the far face of the mesh.
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Table IV. Example analyses specifications.

Analysis  Lined/unlined No. of elements No. of nodes Ground loss Ground loss  Equivalent
Reference specified (%) measured (%) trough width
parameter, i (m)

UL Unlined 6476 N/A 2.66 7.12
SL Lined 7436 9735 1.0 1.13 9.70
(overlapping
shell elements)
CL Lined 6476 1.0 1.17 7.39
(continuum
elements)

0.3. Empirical prediction of settlements

The analyses presented here are for a greenfield site and may therefore be compared with surface
settlements estimated using the standard semi-empirical approach [1]. In this procedure the
transverse profile of settlement is assumed to follow the Gaussian curve

S = Smaxe“xz/zp (3)

where S, is the maximum settlement above the tunnel axis and x is the transverse distance from
the tunnel axis. The width of the settlement trough is defined by the parameter i which varies
according to the depth of the tunnel and the nature of the ground. For overconsolidated clays, the
relation i = 0.5Z, where Z is the depth to the tunnel axis, is often assumed [1].

In this semi-empirical approach, the longitudinal profile of the surface settlement is assumed to
follow the cumulative Gaussian curve

Smax y = .Vf> (y - y)}
erf — erf 4)
2 [ ( iﬁ i\/i
where y is the co-ordinate along the tunnel axis, y; is the current location of the tunnel face, y; is

the starting point of the tunnel excavation. (Note that for the case of a tunnel whose excavation
begins a large distance from the face, the second error function term tends to unity.)

S(y) =

6.4. Prediction of settlements from the numerical model

Figure 11 shows the computed transverse settlement profile at the centre of the mesh (ie.
y = 30 m) for various stages of the unlined analysis (UL). Similar plots for the lined analyses are
shown in Figures 12 and 13. Also plotted are the settlement profiles obtained from Equation (2)
with i = 5 m and taking the appropriate value of ground loss from Table IV. Note that in these
plots r is the appropriate value for tunnel radius, which is 2.5 m for runs UL and SL and 2.375 m
for run CL.

These plots show the gradual development of transverse settlement as the tunnel progresses. At
the end of the analysis (stage 10) all three analyses show a well-defined settlement trough above
the tunnel. As expected, the magnitude of the settlements for the lined analysis are generally less
than those from the unlined analysis.
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Figure 11. Transverse settlement profile (UL).

For all three analyses the computed variation of settlement with distance from the tunnel axis
are similar in shape to a Gauss curve, but the computed settlement troughs are clearly wider (and
the maximum settlement correspondingly smaller) than the semi-empirical predictions. Table IV
lists values of ‘equivalent trough width parameter’ which correspond to a Gauss curve with values
of maximum displacement and ground loss taken from the numerical analyses. These width
parameters are rather larger than the value of 5 m that would be expected for a tunnel at 10m
depth in overconsolidated clay. This overprediction of settlement trough width is, in fact,
a common feature of tunnelling analysis. Stallebrass et al. [29], for example, noted a similar effect
when using a multiple yield surface model to back-analyse the results of centrifuge model tests.
The nested yield surface model used in these analyses was developed specifically to model the
small-strain non-linearity that is known to characterize the behaviour of clay at small strain.
Although these multiple yield surface models produce settlement troughs that are more realistic
than those obtained from conventional elasto-plastic models, it seems that further refinements are
required to obfain settlement profiles with widths that are consistent with those seen in practice.
This tendency of the results of numerical analysis to overpredict the widths of settlement troughs
is also discussed by Simpson et al. [ 30], who suggest that models in which the effects of anisotropy
of the ground are included may lead to improved results. Further investigation of this suggestion
is, however, beyond the scope of this paper.

Figures 12 and 13 provide an interesting comparison because they both relate to the installa-
tion of a tunnel in which the characteristics of the liner being modelled are the same. The results in
Figure 12, however, were obtained using continuum elements to model the liner (CL) and
Figure 13 shows the results of an analysis in which Phaal and Calladine elements are used to
model the liner (SL). The computed displacements in Figures 12 and 13 are of a similar shape but
quantitatively they are quite different. The settlement trough for the CL analysis, for example,
particularly at the end of the analysis (Stage 10) is noticeably deeper and narrower than the
settlement trough obtained at the end of run SL. It is clear, then, that the method use to model the
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Figure 13. Transverse settlement profile (SL).

tunnel liner can have a significant effect on the nature of the computed surface settlements.
A further comparison between the settlements obtained from these two runs is given in Figure 14.
These perspective plots show the difference in maximum settlement between the two lining
element types that is evident in the two-dimensional plots. The unevenness of the surface
settlement profile immediately above the tunnel is probably due to the relatively large (6 m)
increments of tunnel installation adopted in these analyses. The unevenness is more pronounced
in the shell element analysis although the reason for this behaviour is unclear.

It seems likely the results of run SL are influenced by the over-stiff performance of the
embedded Phaal and Calladine elements that was observed in the results of the example analyses
described in Section 4. A detailed inspection of the deformed shape of the tunnel at the end of the
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Figure 15. Deformed shape of tunnel at the end of example lined analyses.

analysis shows that the computed deformations of the tunnel cross sections are quite different
(see Figure 15). This figure shows the deformations of the element corner nodes magnified by
a factor of 20; midside nodes are omitted for clarity. These deformed shapes show that the flexural
liner deformations in run SL are significantly less than those in run CL. This difference is
presumed to be associated with excessively stiff behaviour of the Phaal and Calladine elements
which leads, it is thought, to differences in the computed settlement profiles.

7. CONCLUSIONS

It is clear that considerable care needs to be taken in the choice of numerical formulation and
computation procedure to carry out meaningful analysis of stiff embedded tunnel liners. Two
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broad approaches appear to be available; the liner may be modelled either using conventional
continuum elements or, alternatively, by the use of specially formulated shell elements.

The use of continuum elements to model thin shell structures inevitably leads to elements that
have poor geometric conditioning. For the calculations described in this paper, however, it is
argued that any consequential round-off errors are not significant provided the computations are
based on double precision arithmetic. In this case, thin layers of continuum elements would seem
to be a robust procedure for use in practice.

This study suggests that satisfactory results can be obtained when specially formulated shell
elements are used to model the tunnel liner. However experience gained using the Phaal and
Calladine element suggests that shell elements may behave in an over-stiff manner when
embedded in a mesh of continuum elements. This behaviour is presumably associated with a lack
of compatibility between the shell and continuum elements and no evidence of over-stiff behav-
iour is apparent when these shell elements are tested in isolation.
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