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Generation of shape functions for rectangular plate elements

Charles E. Augarde®!

School of Engineering, University of Durham, South Road, Durham DHJ] 3LE, UK.

SUMMARY

This paper describes a procedure for the generation of shape functions for a family of rectangular
plate elements from Lagrangian polynomials. A novel generation procedure is developed from previous
work for straight beam elements, where level one Hermitian polynomials were derived from simpler
Lagrangian polynomials. A number of examples are provided to illustrate the technique. Copyright
© 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

A large number of elements for modelling flat plate structures are described in the litera-
ture. While it is true that, in recent years, interest in flat plates has been less than that shown
in the development of shell finite elements there remain many instances in mechanical or civil
engineering when a flat plate element is required for analysis or design.

Most finite element textbooks give derivations for quadrilateral plate element formulations
[1-3] that will be familiar to the reader. As for plane stress continuum elements, there exist
two classes of quadrilateral plate elements: those derived from the use of Lagrangian shape
functions and the so-called serendipity elements. The former have internal as well as edge
nodes while the latter do not.

Both beam and plate finite elements require C' continuity and hence possess rotational
degrees of freedom at nodes. This is usually achieved by forming shape functions from
Hermitian (or Hermite) polynomials which can be used to interpolate with both nodal values
and nodal derivatives of the field variable.

El-Zafrany and Cookson [4] developed methods of combining one-dimensional (1D)
Lagrangian and Hermitian polynomials to produce shape functions for two-dimensional (2D)
membrane and plate elements, respectively. Methods were also developed to produce functions
for transition elements in these families. More recently, Hashemolhosseini et al. [5] derived
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a new family of elements having C' continuity and higher. Standard Lagrangian shape func-
tions were ‘blended’ with Hermitian polynomials to obtain suitable shape functions for these
complex elements, employing overlapping elements similar in some respects to plate elements
derived from mechanical approaches [6].

In this paper, a new procedure is described for the derivation of shape functions for any
rectangular C' continuous serendipity plate element, i.e. with any number of equally spaced
nodes per edge. The novelty of the approach is it requires only 1D Lagrangian polynomials.
The procedure is implemented in Maple code and could straightforwardly be implemented in
a conventional finite element code.

HERMITIAN INTERPOLATION AND BEAM SHAPE FUNCTIONS

The one-dimensional (1D) equivalent of a plate element is the beam element. The simplest
straight beam finite element has two nodes. Four 1D (with respect to the co-ordinate x) shape
functions are required to interpolate the lateral deflection w(x) for this element if axial effects
are neglected. These functions are Hermitian polynomials, A} of level (or order) r, relating
to node 7 and to derivative order j of w. where

dH e

L=l k=) for j=0ton when x=x (D
d i, .

a0 k£ or xtx 2)

Here, and throughout the paper, we make the Kirchofl assumption that rotation is equivalent
to the first derivative of the lateral deflection w(x). The level of the polynomial indicates the
highest order derivative used in the interpolation and thus corresponds to the continuity level
(i.e. C° C', etc.) For the two-noded beam element the shape functions are

Ny=Hj},. No=H}\, Ny=Hj,, Ni=H} (3)

In a previous paper by the author [7], the link between Hermitian polynomials and Lagrangian
interpolation polynomials was highlighted. This link is described in many mathematical texts
e.g. [8,9] but had not to the author’s knowledge been explicitly used to generate beam shape
functions from Lagrangian polynomials. Level one Hermitian polynomials can be derived from
Lagrangian polynomials by the following:

Hyy =1 = 2(x = x)Li )LL) @
H; = (x = x)[L(x)F (5)
where L,(x) is the 1D Lagrangian polynomial of degree (nnod — 1) calculated at node i,

given by

nnod

L= ] 2 (6)

Xi — X
J=lysi Y

and L}(x) is its first derivative with respect to x.
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The advantage of deriving Hermitian shape functions in this way is that Lagrangian poly-
nomials are simpler to generate automatically and will be present in a conventional, finite
element code already, for shape functions of membrane elements.

EXTENSION TO PLATE ELEMENTS

Given that beam element shape functions can be derived in this simple way, the procedure is
now extended to generate shape functions for 2D plate elements. The family of plate elements
for which shape functions are derived below is shown in Figure 1. They possess nodes along
edges only with no nodes on the element interior (i.e. serendipity elements). All functions
derived in this paper are based on a parent element with sides 2a¢ and 2b in the x and y
directions, respectively, corresponding to the elements described in standard finite element
texts [3]. It is well-known that a shape function for a 2D element can be built from the
product of two 1D shape functions [2] if one beam element is defined in a 1D x-co-ordinate
system and the other is defined in a 1D y-co-ordinate system, although care must be taken
to develop a procedure that can scale accurately with the number of nodes along an element
side.

Beginning with the simplest of these plate elements, with four nodes, its shape functions
can be derived by combining 1D shape functions for two two-noded beam elements. To allow
a simple algorithm to be generated for plate shape function production an unusual numbering
scheme is adopted for the plate elements in this paper. (However it is trivial to convert the
numbering system used here to any other more conventional system once the shape functions
have been generated.)

The numbering system is best explained by starting with a four-noded plate with nodes
numbered as shown in Figure 2(a). Each side is assigned a direction as shown, which is used
to determine which beam element shape functions are mapped to which plate shape functions.
(The directions are associated with the directions of positive x or positive y.) Successive
members of the plate element family have four additional nodes each, as shown in Figure 2(b).
To create the next member of the family, the eight-noded element, a node is added to the
midpoint of each edge of the plate; these new nodes take numbers 5-8. The next member of
the family (the 12-noded element) is created by moving the midside nodes of the eight-noded
plate to the one-third positions from the start of the sides, and adding the extra node per
side at the two-thirds positions. These new nodes then take numbers 9-12. Each successive
element is therefore created by adding a node to the ‘end’ of each set of midside nodes.

Plate shape functions for the four-noded element are derived from two-noded beam ele-
ments.- In general an m-noded plate requires the shape functions of a n-noded beam element

2a

4-node 8-node 12-node

Figure 1. Class of plate elements covered in this paper.
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Figure 2. Degrees of freedom and node numbering of plate elements: (a) four-
node plate element; and (b) node numbering.

Table 1. One-dimensional Hermitian polynomial functions (two-node beam)
for a four-noded plate element.

Node no. 1 2 3 4

D.o.f. no. 1 2 3 4 5 6 7 8 9 10 11 12

X Hy Hy Ha He Mo He He Hoo He Hay  Ha o Ho
4 Hy He Hyn Hu Ha Hy Hp He Hoe He He Ho

where
m=4{(n - 1) (7)

All beam elements are of length 2a or 2b to follow the plate element dimensions and depend-
ing on their co-ordinate system. Beam element nodes are placed at the ends of the elements
first, i.e. with the first node at —a, the second at +a and subsequent nodes at intervals of
2a/(n — 1) in between. Once again, the reason for this numbering is to simplify the final
algorithm for plate shape function generation.

Each plate node i has three degrees of freedom, as shown in Figure 2(a): one out-of-plane
translational wi(x, y) and two rotational degrees of freedom w (x, y) and w ;(x, ), thus giving
3m shape functions per plate element. The 1D shape function products required for each shape
function for the four-noded plate are shown in Table 1. Rows 3 and 4 of this table indicate
the 1D shape functions (written in terms of their level one Hermitian polynomial equivalents)
to be multiplied together to obtain the plate shape function in row 2. Polynomials in row 3
are written in terms of x (and hence @) and those in row 4, y (and hence b).

Copyright © 2004 John Wiley & Sons, Ltd. Commun. Numer., Meth. Engng 2004; 20:655-663




GENERATION OF SHAPE FUNCTIONS 659

Table II. One-dimensional Hermitian polynomial functions (four-node beam)
for nodes 5-8 of a 12-noded plate element.

Node no. 5 6 7 8
D.of o no. 13 14 15 16 17 18 19 20 21 22 23 24

x Hy Hys  Heps He Hay Ho He Ha  He Ho Hy Hy
B Hoy Hyw Hu Hpn Hs Hs He Hp Ha2 Hy Hu  Hy

For higher-order plate elements (i.e. m=28,12,16,...) shape functions can be automatically
generated using the following procedure. For the corner nodes, the plate node number does not
change (i.e. all are 1,2,3,4) and Table I can be used. It is important to note, however, that the
Hermitian polynomials change each time as they are based on different 1D shape functions.
For midside nodes, providing the plate node numbering system is followed as described above,
a simple algorithm gives the required Hermitian polynomials, similar to Table 1. The pattern
of the first index j of Hj; in rows 3 and 4 is repeated for each degree of freedom for each
set of four additional nodes added, i.e. for x the pattern is 0,1,0 and for y it is 0,0, 1. The
second index i of Hj; is the same for all degrees of freedom on a node. The pattern it takes
is determined by an additional parameter, blk which is the number of the four node block
in which a plate node occurs (i.e. nodes 5-8 are in blk =2, nodes 9-12 are in blk =3 etc.)
Midside nodes then fall into blocks, blk==2,...,m/4. The second index i of H i (which also
corresponds to the beam element node number) is then given by

Node no. X ¥
4l -1)+1 = blk + 1 1 (8)
Ablk -1 +2 = 2 blk +1 (9
4blk —1)+3 = n—(blk-2) 2 (10)
400k - 1)+4 = l n—(blk —2) (11)

As an example, the 1D Hermitian polynomials required for nodes 5-8 of a 12-noded plate
are given in Table II using the above procedure.

Therefore, given the number of plate element nodes m, one can determine #, the number
of nodes on the constitutive beam elements. Lagrangian polynomials and their derivatives
are derived from Equation (6) for these beam elements and are used to produce Hermitian
polynomials from Equations (4) and (5). These are then multiplied together, according to the
rules outlined above, to produce 3m plate shape functions.

This sequence of operations has been implemented in a simple Maple program and used
to generate the plate shape functions for a range of elements. Checking consists of ensuring
Equations (1) and (2) hold for all functions. Four examples of shape functions generated this
way are given below where the substitutions ¥ =x/a, y = y/b have been made

Ne(8-node) = 1/16(4 — 33)(&°* + )X by + b)(7* — 7)° (12)

Copyright © 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:655-663
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Figure 3. Plots of plate shape functions: (a) N, 8-node; (b) Ny
12-node; (¢) Ny 16-node; and (d) Ny, 20-node.

1

N4( 12-n0de) e m

(=13 + 1192 + 987 — 5~ 1)
)(13 4+ 11F)97 — 957 ~ p+ 1) (13)
Nag(16-node) = “T(lj'g (=28 + 258)F (4% 4 45" — § — 1)

X (47" — 557 4+ 1)? (14)

625

Nie(20-n0de) = — o555 15808

(149 + 137%)

X (6255 4 6255 — 2508° — 2505° + 9% +9)?

x(51 +657)(1255° — 755 — 1305 + 787% + 55 — 3)* (15)

The first of these functions is for a rotational degree-of-freedom while the others are nodal
translations. These functions fulfil the requirements of Equations (1) and (2) (remembering
that the derivatives should be taken with respect to x and not ¥). Plots of these functions are
shown in Figure 3 for the domain —1<a<1, —1<h<1. The value of the shape functions is
shown on the vertical axis.
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DISCUSSION

The family of elements derived by the above procedure are similar to the well-known formu-
lation of Bogner et al. [10] although the latter are not serendipity elements and possess four
degrees-of-freedom at nodes rather than three as in this formulation. (The additional degree-of

freedom is (f:(‘fv.) Both families of elements work only when the elements are rectangular with
axes parallel to global x, y axes. This is a feature of these simple plate element formulations,
another example being the four-noded element developed from p. 15 of [2].

The approximation properties of this new family of plate elements can be judged from the
polynomial equivalent to the shape functions for the four-node member of the family, which
is derived in Appendix A. The polynomial is typical for a serendipity element with omission
of terms from the complete polynomial (using Pascal’s triangle for instance). The four-node
element is isotropic with the omission of the x?y* term. The element permits rigid-body
modes and passes the constant curvature patch test since the polynomial includes the terms
oy -+ opx + o3y + ogxy. The performance of this element in plate problems, judged perhaps
from numerical examples, is beyond the scope of this paper, which is confined to an outline
of the theoretical basis for this new family of elements. Their applicability is, however, likely
to be similar to the simple plate elements in References [2, 10]

CONCLUSION

A procedure has been outlined where shape functions for a class of rectangular plate finite
elements can be derived from 1D Lagrangian polynomials. It is acknowledged that the market
for elements such as described in this paper may not be large, due to unwelcome properties
such as higher order incompatibility between elements. However, the elegance with which
their shape functions can be derived makes them worthy additions to the many other plate
elements in the literature.

APPENDIX A

Plate element lateral displacement w is interpolated with shape functions ; and the nodal
displacements and rotations, d;. In matrix format,

w=Nd (A1)
or in terms of a polynomial,
w=Pux (A2)

where P={1,x, y,x*,xy, y*,...} and o= {o, %, 03,...}" Starting from this basis write d = Ca
by successive use of Equation (Al) at nodes. Hence

a=C"'d (A3)

Copyright © 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:655-663
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w=PC™'d (A4)

N=PC™' (A5)

For the four-node plate element shown in Figure 2(a) shape functions derived by the procedure
outlined lead to the following:

P={1,x, poxtoxy, y2x, a2y, x, 0 Py ) (A6)

ie. a 15 term polynomial. The coefficient vector o is derived from the 12 x 1 vector d
pre-multiplied by the 15 x 12 matrix C™' which can be shown to be

4 2a 2b 4 ~2a 2b 4 -2a  -2b 4 2a ~2b
.8 2 .3 o ) 3 [ -2 3 8 ) 3
a E a [ a - a a a
N b 34 - 4 3 - 6 3a -
h h = h b 2 h ) 2 b h 2
3
0 — (% 0 0 : 0 0 ‘% 0 0 - % 0
2 3 3 L 2 3 A 2 3 A 3 3
ah b o ah h a ah b a ah h a
0 0 -3 0 0 -2 0 0 2 0 0 z
2 2 h el 2 b 2 2 LA 2 2 _ b
w? a’ a & ot a a a* ot & a? a’
1 ) . :
-1 __ 2 e e e —2
C = TE 0 ab 0 0 wh 0 0 al 0 0 ah 0
3 3 3 3
0 0 ab 0 0 ab 0 0 ab 0 0 T ab
2 a 2 @ 2 2 o 2 2 o 2
B B B b3 » n A [ Bt & n b
3 3 1 R 1 3 | 3 3 1
@b ath P ah a’h ot @b ah a3 b ah a®
_A L L3 3 — =N - L IR 3 !
ab’ n b b’ b ab? abt I ah? ab¥ » ab?
. L ok L
0 0 @ h 0 0 &b 0 0 ¥h 0 0 @b
1 t 4
0 3 0 0 ol 0 0 s 0 0 i 0
b 1 e . I ot 1 o b . 1 1
a3’ ath’ r atiy ) ah? at b s P P @b a3h?

(A7)

Examination of the above shows that this element is isotropic since polynomial terms are
included equally from ecither side of Pascal’s triangle. The polynomial coeflicients contain
element nodal co-ordinate data (a,b) and nodal displacements and rotations. Completeness is
satisfied for rigid-body movement and constant curvature.
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