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A tying scheme for imposing displacement constraints
In finite element analysis
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SUMMARY

This paper describes the formulation of elements to connect finite element meshes of differing dimensionality.
The formulation employs minimization using Lagrange multipliers. While this technique is already described
In many texts, this paper demonstrates how particular types of connection may be implemented as independent
‘tie’ elements. Ties for connecting 2D and 3D nodes and for 2D to 2D nodes are formulated in this paper

and examples are given showing their application. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element analysis of structures often involves mixing elements of different type. This is done
to model accurately the components of the structure and often to reduce the total freedom count.
This paper is concerned with connections between elements with translational freedoms, which
can be implemented by incorporating displacement constraints. The main difficulty is the need for
the user to prepare the constraint equations sets. A simpler approach is outlined here in which the
constraints are implemented via separate ‘tie’ elements. The imposition of mesh connections using
constraint equations is not new and is covered in a number of texts. The idea of separate elements
1S, however, novel. *

The developments described here arise from modelling of a set of building facades on a soil foun-
dation [1]. The former are modelled with plane stress elements; the latter with three-dimensional

continuum elements. Connections between these two different elements are needed to implement
the model.
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Figure 1. (a) Two planes with common nodes; and (b) two planes connected via constraints.

2. CONNECTING NODES IN DIFFERENT CO-ORDINATE SYSTEMS

If two finite element meshes share the same co-ordinate system, degrees of freedom at their
interface can be shared to connect the meshes. Alternative approaches are necessary, however, when
meshes are defined in independent co-ordinate systems. Figure 1 shows two planes of elements
joined along an edge. Each plane has a local co-ordinate system. Clearly, the meshes can be
connected either by using nodes common to each mesh, at the interface (Figure 1(a)), or by using
separate nodes and imposing constraints to transfer loads and displacements (Figure 1(b)).

Common nodes between meshes must be of a higher dimensionality than the meshes they
connect. In Figure 1(a), all nodes have two translational degrees of freedom. The common nodes
must, therefore, have three translational degrees of freedom. Problems arise when two plane meshes
are almost parallel since the stifiness associated with displacements out of the plane is very small,
leading to singularity of the structural stiffiness matrix.

3. CONNECTIONS USING DISPLACEMENT CONSTRAINTS

Displacement constraints can be included in an FE model in two ways. Firstly, stiff link elements,
such as element SPRING2 in the commercial FE code, ABAQUS [2], can be used to join the
meshes at their interface. This element can link nodes that are defined in different local co-ordinate
systems. A rigid connection 1s then obtained by setting the spring stiffness to a large value. The
inclusion of large local stifinesses can, however, lead to numerical difficulties in solution and
should only be used as a last resort [3].

The second approach recognizes that any constraint on displacements between nodes in a finite
element mesh can be written as an equation in those displacements. For the connection of nodes
defined 1n different co-ordinate systems, the constraints are linear equations. For example, imposing

the condition that nodes C; and C; in Figure 1(b), have the same vertical displacement v can be
written as

v, — Uz, =0 (1)

Copyright © 2000 John Wiley & Sons, Ltd. _ Commun. Numer. Meth. Engng 2000; 16:721-732
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where the superscript indicates the local co-ordinate system. In general, the m constraint equations
(for the m connections between two meshes) can be written as

Cd =0Q ‘ ‘ (2)

where d is the nodal displacement vector and n is the total number of degrees of freedom in

the structure. (Q =0 if the constraints are node-to-node fixities, as above). ABAQUS includes a
facility for specifying these constraint equations directly [2].
Solution of Equation (2), in conjunction with the structural stiffness equations

Kd

f (3)

(where K is the structural stiffness matrix and f the force vector) leads to the nodal displacements,
d, and thence the stresses, by standard procedures.

Cook et al. [4] describe two solution methods for these coupled equations. The first involves
elimination of m degrees of freedom from d using the constraints in Equation (2). A disadvantage
- of this approach is that modification of the assembled structural stiffness matrix is necessary, which
may lead to considerable extra computation, particularly for three-dimensional analysis. The method

cannot be applied directly to Frontal solution techniques where the structural stiffness matrix is
never formed. '

4. USE OF LAGRANGE MULTIPLIERS

Another well-established method of incorporating constraints in the form of Equation (2) uses
minimization by Lagrange’s method of undetermined multipliers. The mathematical basis and ap-
plication of Lagrange multipliers is described in many texts [4—6]. Other references [3, 7] also
indicate the possibilities of coupling dissimilar meshes using this approach but are restricted to
coupling of elements of the same dimensionality.

In this instance, the function to be minimized is the total potential energy, I, and the linked

variables are those in d. The system unknowns are now augmented by the Lagrange multipliers A
and the total potential energy function becomes

IT,=3d"Kd — d'f + AT(Cd — Q) (4)
Minimizing gives
I1
od -
011,
= Cd-Q=0 (6)

Rewriting gives

K C' /d f
(¢ 0)(2)-(e) g
A can be interpreted as the nodal forces necessary to implement the displacement constraints [4].
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This approach does not require modification of the structural stiffness matrix and allows con-
straints to be modelled as special elements. This makes the approach suitable for element-based
solvers, such the Frontal technique. Another advantage with this element-based approach to mod-
elling constraints is that the elements can be generated automatically, removing the need for the
user to develop and specify individual constraints at mesh interfaces. There appear to be few
examples of this approach in past research, one exception being the work of Al-Mahaidi and
Nilson who describe analyses of coupled shear walls where the connections are implemented us-
Ing ‘imaginary’ elements similar to the ties described here [8].

5. IMPLEMENTATION OF TIE ELEMENTS

Equation (7) indicates that the application of displacement constraints to an unconstrained system
1s the same as the addition of an element with a stiffness matrix

O (! .
C o . (8) .

The remainder of this paper is concerned with the derivation of the constraint equations in the C
sub-matrices of ‘tie’ elements, for various combinations of co-ordinate systems. A more compre-
hensive treatment 1s given by Liu [9].

Equation (7) shows that the unknown displacements associated with a tie element are augmented
by additional constraint reactions from the vector of Lagrange multipliers. These constraint reac-
tions can be considered as the unknown variables associated with a set of ‘imaginary’ nodes on a
tie element, in the same way that the displacements are associated with the real nodes.

Consider two nodes, N; and N,, located in different local co-ordinate systems (x', y',z!) and
(x%,y*,z*). Ny and N, have local displacements d] and d?, respectively. (A superscript indicates
the co-ordinate system and a subscript, the associated node.) The transformations between the local
and global systems are

& =R'¢ 4% =R ©)
i2=R2d¢ dS=(R*)Tq? - (10)
Thus,
d; =R'“d; where R?=R?*(R})! (11)
d, =R*'d? where R =R!(R?)! (12)

Various types of connections between different co-ordinate systems will now be outlined.

5.1. Connection between 3D nodes

Two 3D nodes N;, N,, in local co-ordinate systems (x', y',z') and (x?, y2,z?) are to be connected.
After transformation into the local co-ordinate system (x!, y!,z!), the displacements will be

)

dj = | o (13)

Wi

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Figure 2. Connection between 2D and 3D nodes.

21 21 21 2

i T2 Fh3 U,
1 _ p2la2 21 .21 .21 2
L=R"dy= | riy ryp r; . (14)
21 .21 .21 2
r31 T3 I3 W
The connection condition is
1 4l
d; =d, ' (15)
Therefore,
1 212 21..2 21.2
Uy —ripuy —rpvy —rigwy; =0 (16)
1 212 21..2 21..2
V) — Uy —rpvy —riwy, =0 (17)
1 212 21..2 21..2
Wi — 13Uy —rpty; —rpw; =0 (18)

For the displacement vector (u,v1, w;,us, U2, wy), the constraint matrix is
21 .21 21
1 0 0 riy ry, ri;
_ 21 .21 .21
21 .21 .21
0 0 1 ryy ry ri;

5.2. Connection between 2D and 3D nodes

The connection of 2D node N; and 3D node N, is shown in Figure 2. The same transformation
as for two 3D nodes results in the same equations as above (Equations (16)—(18)). Since w; is
arbitrary, as the node N; is two-dimensional, the third equation is automatically satisfied. For the
displacement vector (u;, vy, us, 2, w,), the constraint matrix is

21 21 21

C— 1 0 riy o r'13 (20)
o 0 1 21 21 21
a1 Ty I3

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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X

Figure 3. Connection between 2D nodes with the same y-axis.
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Figure 4. Connection condition of displacements along local x- and z-axes.

5.3. Connection between two or more 2D nodes

The connection of 2D nodes 1s more complicated than the previous situations and is studied first
for the simple case of two 2D nodes with the same local y-axis. This is then extended to more

general cases. It 1s assumed that the x- and y-axes are in plane locally and the z-axis are out of
plane.

3.3.1. Two 2D nodes with the same local y-axis. When two nodes have the same y-axis

(Figure 3), their x—z-planes will be parallel. The intersection line of the planes containing
x!- and y'-axes and x*- and y?*-axes will also be parallel to their y-axis. If node N; has a
displacement vector (u;,v;,w;)! in its own local system (x', y',z') and node N, has displacement
vector (uy, v, w2)' in (x?, y%,2z%) then, as they are connected, they should have the same displace-
ment (U, v, W)" in a reference system (X, y, Z) which shares the y-axis with both local co-ordinate
systems (Figure 4).

It can be shown that
u; = U cos ' + W sin 6 (21)
uy, = U cos 0% + W sin 6* (22)

Copyright © 2000 John Wiley & Sons, Ltd. , Commun. Numer. Meth. Engng 2000; 16:721-732
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U1 =0 (23)
vy =1 - (24)
Equations (23) and (24) give a constraint condition
U1 =102 (25)
From Equations (21) and (22) the common displacements can be expressed by
] .9 e
I 2 N
W = m-)-(—-ul cos 0 + U» cos 0 ) (27)

When 0' # 02, for any pair of uy,u, there always exist unique U, W with the adjustment of
arbitrary w; and w;, meaning that the two nodes can move together without any constraint to u;,

uy. For the case of 6' =602, Equations (21) and (22) will become identical so that the following
condition 1s also needed.

Uy =uz ' (28)
T'wo conclusions having simple physical meanings therefore arise.

e Ior any two non-parallel planes, the nodes of different planes at the same position along
the intersection line must have the same displacement components parallel to the intersection
line. There i1s no constraint for the displacement normal to this line.

® I‘or two parallel planes, in addition to the constraint to the displacement components parallel
to the intersection line, they must have same displacement components normal to this line.

J.3.2. Two 2D nodes with different local y-axis. The conclusions of the previous case are inde-

pendent of the co-ordinate system and can be used in this case. The displacements, however, must
be transformed to the directions parallel and normal to the intersection line.

For two nodes, N; and N, in Figure 5, the new displacements are [9]
I

1

U1 SIN O — V1 COS &
d%N — | U; COS Otl + U1 sin OCI (29)
Wi
S, 2
U SIN A — Uy COS &
d;" = | uycoso? +vysina® (30)

W2
For two oblique planes, the constraint condition is

]

U] CosS o + vy sin o — U, COS a° + v, sin o2 (31)

When the two planes are parallel, an extra condition is applied:

up sina! — vy cos ol = u, sin o? — vy COS 0> (32)

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Figure 5. Two 2D nodes with different local y-axis.

Figure 6. Multi-plane connection.

J.4. Three or more 2D nodes in planes with a common intersection line as the same local y-axis

In this case, a reference co-ordinate system, (X, y,Z), whose y-axis is the same as the local co-
ordinate system, 1s used (Figure 6). For the displacement components parallel to the intersection

line (also parallel to the common y-axis) m — 1 constraint equations ensure that the displacements
in the direction of the axis are equal. '

VI =UV)=03="*=Up_1 =Up (33)

The displacements normal to the intersection line must be compatible so that

u; = U cos6' + W sin 6’ . (34)
uy = U cos 6% + W sin 6° (35)
uy = U cos 6 + W sin 6° (36)
u, = U cos 8™ + W sin 0™ (37)

[t more than two planes intersect on a common line, then at least two cf these planes will be
non-parallel. For these non parallel planes, 0' #6° and U and W can be found while using

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Equations (34) and (35),

_ I S, . Nl

U= Sin(6? — 6’1)(1,11 sin 0“ — u; sin0") (38)
_ 1 2 1

W_sin(92—91)( U1 cos 0° + up cos 0) (39)

The displacements u3,uy, ..., u, are not independent and are determined by the following equations:

=Ucos 8 + W sin &
1
sin(0? — 1)

The condition can be rewritten as

(uy sin(6° — 0') + up sin(0' — 6')) (i=3,...,m) (40)

uy sin(0 — 0") + up sin(@ — 0') + u; sin(6' — 6*)=0 (i=3,...,m) ‘ (41)

In conclusion, for m (m=>3) planes intersecting at the same line, there are m — 1 constraints on

their displacements parallel to the intersection line and m — 2 constraints on their displacements
normal to the intersection line. They are

vy = vy (42)

vy = 3 (43)

Um—1 = Up (44)

uy sin(6” — 6°) + u, sin(6® — 6') + u; sin(6' — 62)=0 (45)
uy sin(6* — 0%) + u, sin(0* — 0') + u4 sin(8! — 8*) =0 (46)
uy sin(0* — 0™) + u, sin(0™ — 0') + u,, sin(0! — 6?)=0 (47)

5.3. Three or more 2D nodes of planes with arbitrary local y-axis but a common intersection line

In a similar way to the case of two 2D nodes with different local y-axis in Section 5.3.2, the first

step 1s to translate the displacements of nodes to components parallel and normal to the intersection
line. The new displacements are

U; sin o — U; COS o’
df-vz u;cosa’ + v; sina’ (i=1,2,...,m) (48)
Wi

where o is the angle between the y’-axis and the intersection line. The conditions on the displace-

ment components parallel to the intersection line become

i+1

u;coso’ + v;sina’ =wu;cosa’ ™ + vy sinadtt (i=1,2,...,m— 1) (49)

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Figure 7. Thre oblique deep beams.

The constraints on the displacement normal to the intersection line are

1 2

(up sina' — vy cosa' )sin(6* — 6°) + (uy sin o* — v, cos a?) sin(@' — 6')

+ (u;sino — v;cos o) sin(0' — 0°)=0 (i=3,4,...,m) (50)

Ties for other types of displacement constraints can be constructed in a similar way and the
‘different types of ties discussed above may be combined.

6. EXAMPLES

Tie elements of the types described above have been implemented in the analysis code OXFEM
(developed at Oxford University to study geotechnical problems). A simple example of their use
1s shown 1n Figure 7. Three plane stress rectangles, each 2 m x 1 m, model three linear elastic
deep beams. The Young’s modulus is £ =107 kPa and the Poisson’s ratio, v=0.2. A vertical
point load, P =10* kN is applied to the tip of beam /.

Figure 8 shows the deformation of this structure under the load for differing connections between
the free ends of the beams.

1. No connection: Beam I behaves as a cantilever, others remain undeformed. The vertical
displacement of the loading point 1s 41 mm.

Partial connection: The beams are connected with tie elements that enforce vertical displace-
ment only and they behave like three separate cantilevers. The vertical displacement of the
loading point reduces to 13.5 mm due to the increased stiffness.

3. Full connection: The beams are connected with tie elements that constrain horizontal and

vertical displacements at the ends. The structure is therefore much stiffer and the vertical
displacement of the loading point is 5.3 mm.

2.

While undoubtedly a trivial example it nevertheless demonstrates the tie element formulation.

Figure 9 shows part of a complex three-dimensional finite element model used to study the
effects of tunnel construction on masonry structures [1]. The model requires the connection of two-
dimensional plane stress facades to a three-dimensional solid mesh, representing the ground. The

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Figure 8. Deformations of three oblique deep beams with varying degrees of connection. Scale =20: 1.

various ties in this mesh are found to perform as required, implementing the correct connections
between sub-meshes, although its demonstration is beyond the scope of this paper.

7. CONCLUSION

The major advantage of this approach is that the constraints necessary to join meshes can be
implemented in special tie elements which are then treated like any other element in the meshes.
The tie elements described here implement kinematic constraints between dissimilar meshes but
the element-based approach can be extended to connections between elements having rotational as
well as translational freedoms. There is also no need to operate on the structural stiffness matrix
which may be costly for large 3D analysis, or to generate the constraint equations themselves.

Copyright © 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 16:721-732
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Figure 9. Complex‘ analysis using tie elements.
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