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Abstract 
 

A complex three-dimensional finite element model has been 
developed to study the effects of tunnel construction on 
adjacent structures. The model uses an in-house finite 
element code in which complex simulations and non-linear 
material models have been developed. This paper describes 
the transfer of this code to a large parallel computer, and the 
improvements in performance that resulted from the move.  
The examination of the code, which was necessary for the 
transfer, also led to improvements in the serial version.  
 

1 Introduction 
 

Numerical modelling of geotechnical engineering problems 
has been carried out in the Civil Engineering Research Group 
at Oxford since 1980. Finite element analysis is performed 
using the in-house finite element program, OXFEM, written 
in Fortran 90 and running on Unix workstations.  A particular 
area of interest of the group, since 1992, has been the 
modelling of soft ground tunnelling and the interaction 
between the effects of tunnel construction and surface 
structures. A complex model, including simulation of tunnel 
construction and a surface structure has been developed 
(Augarde [1], Liu [2]) and is currently being improved and 
validated against field data (Augarde et al. [3], Bloodworth & 
Houlsby [4]). 

A significant aspect of this research is the use of three-
dimensional analysis. Two-dimensional simulations of 
tunnel-building interaction are only satisfactory for very 
simple geometries. A second feature is the use of non-linear 
material models. An overconsolidated clay deposit is 
modelled using a weakly non-linear, elasto-plastic 
formulation.  Masonry, for building facades, is modelled 
using a strongly non-linear elastic-no-tension formulation. 
The combination of large numbers of degrees of freedom, 
and the use of an incremental solution technique, to deal with 
the non-linearities present, leads to large analyses, in terms of 
memory and run-times. The recent acquisition of a  
supercomputer at Oxford, with a limited number of users, has 
allowed more complex analyses to be undertaken. 

This paper describes the transfer of the finite element 
code to the new parallel computer. The paper begins with a 
detailed background to the current research into tunnelling, to 
demonstrate the need for three-dimensional modelling. Some 

results are presented of analyses on workstations and the 
limitations are highlighted. This is followed by a description 
of the Oxford Supercomputer, OSCAR. The transfer of the 
existing finite element code, OXFEM, to the parallel 
computer is detailed and the improvements in performance 
are discussed. Apart from making more complex analyses 
feasible, the process of transfer has highlighted some 
improvements of the serial code, which have also been 
implemented. 

  

2 Numerical modelling of tunnelling-
induced settlement damage to 
structures 

 
Tunnelling is a popular solution for the expansion of 
infrastructure in urban areas, since the impact of the final 
scheme on the environment is usually small compared to 
surface alternatives. The locations of many major cities are 
low-lying or coastal, where the near-surface geology 
typically involves a significant depth of unlithified deposits, 
leading to soft ground tunnelling conditions. In these 
conditions it is necessary to provide permanent ground 
support to the faces of a tunnel in the form of a lining.  

Trough parameters: i = distance from centreline to point  
of inflexion; Smax = maximum settlement 

 
 

Figure 1: Section through circular tunnel driven beneath a 
building showing  assumed  “greenfield” settlement trough. 
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The installation of a lining involves the excavation of a void 
of a larger diameter than the finished tunnel. An annular void 
is therefore created, between the lining and the excavated 
faces, into which the surrounding soil is able to move. In 
addition, soil is able to deform and flow towards the 
advancing tunnel face. In soft ground, the effect of these 
movements will be seen at the surface as settlements, which 
may have significant and potentially damaging effects on 
surface structures of historical or national importance. Much 
effort and expense has therefore been devoted to limiting 
ground movements in tunnelling schemes. Expensive 
accommodation works, such as compensation grouting, have 
been used, on schemes such as the Jubilee Line Extension in 
London, to prevent tunnelling settlements affecting particular 
structures. 

The prediction of the magnitude of tunnelling settlements 
is relatively straightforward at “greenfield” sites, through 
empirical rules calibrated against past field data. The 
transverse settlement trough is assumed, in this case, to be an 
inverted Gaussian distribution [5], as indicated in Figure 1. 
There is, however, little guidance on the effect of a surface 
structure above the tunnel on a settlement trough. 
Consequently, little is known of the potential damage to a 
structure due to tunnelling-induced settlement, where this 
interaction occurs. 

 
2.1 Damage prediction methods  

 
 Current practice usually relies on the approaches of Burland 
and Wroth [6] or Boscardin and Cording [7]. Both assume the 
settlement of a building to follow a profile predicted for a 
“greenfield” site (Fig. 1). Measures of damage based on the 
maximum tensile strain in the building are then used. The 
building is idealised as a linear elastic deep beam. This 
approach, neglecting the possible effects of the building 
weight and stiffness, is usually conservative and provides 
little indication of the localised damage seen in real structures 
affected by settlements. 

Improvements to the approach outlined above have been 
sought, in recent years, to produce reliable predictive tools 
that include soil-structure interaction.  Two-dimensional 
finite element modelling is used by Potts and Addenbrooke 
[8] to generate modification factors to apply to the 
“greenfield” settlement trough to allow for building stiffness. 
This approach, while giving a useful indication of some of 
the interaction effects, is limited in its application to 
problems which may be reasonably represented in two-
dimensions, and where the building weight is not a 
significant factor. This study also provides no information on 
localised building damage. 

 
 

2.2 A three-dimensional finite element model of 
tunnelling. 

 
A research programme has been in progress since 1992 at 
Oxford to develop and use an improved numerical model of 
tunnelling for the prediction of settlement damage. This 
research has concentrated on masonry buildings located 
above overconsolidated clay soil [9].  

The approach taken in this research is new, mainly 
because the problem is  modelled in three dimensions rather 
than two. This is judged essential to represent adequately the 
geometry of a tunnel constructed beneath a building. Three-
dimensional modelling allows the unambiguous 
representation of the true orientation of the building relative 
to the tunnel, and allows the incremental advance of the 
tunnel heading to be simulated.  

Figure 2: A plot in principal stress space of nested yield 
surfaces after a stress path from the origin to A and back. 
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Figure 3: Elastic no-tension material model for masonry 
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The numerical model developed incorporates procedures for 
modelling excavation of the tunnel volume and lining 
installation [1]. The primary source of surface settlements, 
the volume loss due to the over-excavation of the real tunnel 
(as described above), is simulated by shrinking the lining. 
The lining is modelled with faceted shell elements [10, 11], 
where bending stiffness arises from a novel overlapping 
scheme, rather than through shape functions involving 
rotational terms, as in conventional shell elements. 

The choice of material models for the ground and 
structure is vital for the accuracy of the final solution. The 
types of non-linearities that occur in the problem have been 
identified. Overconsolidated clay, in the undrained condition 
to approximate London Clay, exhibits a gradual change in 
stiffness at small strains. This is modelled by a nested-surface 
work-hardening plasticity model described in detail by 
Houlsby [12]. This type of constitutive model is able to 
capture the stress-strain history of an overconsolidated soil, 
now recognised to be of crucial importance in the 
determination of its subsequent behaviour. This is 
accomplished with nested von Mises surfaces as shown in 
Figure 2.  
 

Building masonry on the other hand is a brittle material, 
experiencing an abrupt change of state in tension, moving 
from an uncracked elastic state to a cracked state with almost 
complete loss of stiffness normal to the crack direction. A 
material model has been implemented which models cracking 

and subsequent crack reclosure [2]. The stress-strain 
behaviour of this model is illustrated in Figure 3.  

 
A final innovative feature of this model is a numerical 

scheme to “tie” a two-dimensional finite element mesh to one 
in three-dimensions [2, 13]. This is used to attach two-
dimensional meshes, representing building facades, onto a 
three-dimensional mesh of the ground in which tunnel 
excavation is simulated. Openings in the facades may be 
represented either as holes in the mesh or as regions of 
reduced stiffness [4]. 
 
 

The complete model was demonstrated by Augarde [1] 
for a simple tunnelling scheme, involving a masonry building 
at a skewed angle to a tunnel. Figure 4 shows some details of 
this analysis and the meshes used for the ground and the 
building. Currently, work is underway to collect field data of 
buildings subjected to tunnelling settlement and to conduct 
verification analyses with the model [4]. A detail of the finite 
element mesh of one of these analyses is shown in Figure 5. 
In this case, a shaft is excavated close to the corner of a 
masonry church building. The structure is rectangular in plan 
with a number of openings in the facades. The predicted 
settlements on the surface of the combined model of ground, 
shaft and building are shown in Figure 6. The effect of the 
building in distorting the shape of the settlement bowl around 
the shaft is evident from this plot. 

 

Figure 4: Demonstration model for 3-D analysis of a tunnel, ground and masonry building 
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3 Serial analysis 
 

3.1 Computational procedures 
 

The use of the model of tunnelling described above, is 
complex and includes considerable pre- and post-processing 
stages. Mesh generation is carried out using the commercial 
analysis package I-DEAS. Unstructured meshing is used for 
the soil mesh, with partitioning to provide blocks of elements 
for excavation simulation. Unstructured meshing enables 
greater control over local element lengths where more detail 
is required, around the tunnel and the building footprint. 

A variety of Unix workstations have been used to conduct 
this research, prior to and since the arrival of the Oxford 

Supercomputer. At present, the fastest serial platform 
available to the Group is a Sun Microsystems Ultra 2, having 
two 300 MHz processors and 512Mb of RAM.  

 
The solution procedure adopted in the finite element 

program OXFEM is a highly optimised implementation of 
the Frontal method. While this method has proved adequate 
for this research to date, iterative solution techniques are also 
under investigation. prompted by the considerable debate, at 
present, as to the viability of iterative solution techniques 
with geotechnical material models [14]. These techniques, 
however, appear to provide the most promising way to 
conduct the very large analyses planned for the future. 

 
 

3.2 Performance 
 

The demonstration analyses, such as that shown in Figure 4, 
require many degrees of freedom, even with relatively coarse 
meshes. The mix of non-linearities, described above, leads to 
a large number of incremental load steps. The combination of 
these two features leads to very long run-times. The 
verification analyses [4], for comparison to field data, use 
even larger and more complex models than shown in Figure 
4. This is necessary to model adequately the geometry and 
level of detail of a practical site. For models with over 30,000 
degrees of freedom, and up to 500 load steps to model a 
tunnel advance, run-times of one to two weeks are required 
on the fastest serial platform. One cause of these excessive 
run-times is the need to use memory well in excess of the 
RAM during execution.   
 

Figure 7 shows the ground mesh for a recent verification 
analyses. A model with 40,000 degrees of freedom is 
necessary to model the construction of an underground 
railway tunnel beneath the Mansion House in London 
(construction completed in 1991). The viability of this 
analysis on the serial platform is dubious since run-time for a 
single load step, of which there are 500 in the whole analysis, 
is 1.5 hours.  

 
 

Figure 5: Detail of finite element mesh for shaft and church 
at Maddox Street 

Figure 7: Verification analysis - model of tunnelling beneath 
Mansion House, London 

105m
65m

30m

30m60m

Tunnel 3.35m φ 

Figure 6: Surface settlements obtained from analysis of 
model shown in Figure 5. 
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4 The OSCAR Supercomputer 
 

4.1 Background and history 
 

The Oxford Supercomputing Centre (OSC) was established 
in 1998, with a mission to promote multi-disciplinary 
research in the application of high performance computing, 
particularly in parallel analysis techniques. Funding for the 
centre came from an approximately £1.4m grant under the 
UK Higher Education Funding Council (HEFCE) Joint 
Research Equipment Initiative, with additional support from 
Silicon Graphics Inc. (SGI). The main resource is the Oxford 
Supercomputer, OSCAR commissioned in June 1998. 

Nineteen research groups at Oxford, covering a wide 
range of disciplines in science and engineering have access to 
the supercomputer. As well as civil engineering, research on 
OSCAR is in other branches of engineering science and in 
biochemistry, bioinformatics, biophysics, computing, earth 
sciences, materials, physics, physical and theoretical 
chemistry and physiology. The research groups involved 
share similar interests in large-scale, often mesh-based, 
numerical modelling. 

The OSC is funded for a three-year period initially, from 
April 1998. In addition to maintaining and managing the 
system, including running a batch queue system for 
maximum utilisation of the resource, the OSC provides 
training and advice on parallel computing methods, including 
arranging outside speaker meetings, and facilitates contact 
and dissemination of knowledge between the member 
research groups. 

OSCAR is an SGI Cray Origin 2000 supercomputer, 
similar in appearance to Figure 8, currently having 84 No. 
R10000 MIPS processors (upgradable to 128), 21GB of 
RAM and 256GB of disc storage. A group may make use of 
any number of processors at one time, with the CPU and 
memory usage charged to a notional account. The processors 
are physically arranged in pairs with RAM and access to disk 
space, to form modules, which in turn communicate via the 
Craylink interconnector (Fig. 9). 

The peak processor speed is 195Mhz, 780 MIPS or 390 
MFLOPS (2 integer plus 2 floating point execute and one 
load/store per cycle). The peak computing power is 32 
GFLOPS. The architecture is CC-NUMA (cache coherent, 
non-uniform memory architecture). This means that the 
memory, although physically distributed on the nodes of the 
machines, behaves as one large block of shared memory. 
Access times to memory vary from 1 cycle to 100 cycles, 

depending on whether the data is stored in the local cache of 
the processor or in the memory or cache of a processor in a 
remote module. 

 
4.2 Parallel programming paradigms  

 
The FORTRAN 77, FORTRAN 90, C and C++ programming 
languages are available on OSCAR via its SGI MIPSpro 
compilers. Programs may be compiled and run in serial form, 
but the preference is for OSCAR to be used for parallel 
programming, for which a number of models are available. 
The first is automatic parallelisation, in which the compiler 
parallelises the source code without further user intervention.  
This may be suitable for simple programs but is less efficient 
for more complex code and is not often used. 

Shared memory parallelisation uses directives inserted by 
the user in the source code, which appear as comments to a 
serial compiler. These directives instruct the compiler where 
to compile the code for parallel execution. OSCAR supports 
the OpenMP standard for such directives. This parallelisation 
method takes full advantage of the shared memo ry 
architecture; the user is not concerned about how the memory 
is allocated across different processors, nor how and when 
communication between processors occurs. It also has the 
advantage that the same source code may be compiled and 
run on a serial machine. This feature has practical advantages 
for program development with this project, since serial 
running continues side-by-side with the use of OSCAR. 
Extensions to the OpenMP directive set allow some user 
intervention over memory allocation if desired. 

Figure 8: An SGI Origin 2000 supercomputer (from 
www.sgi.com) 

 

Figure 9: Physical structure of OSCAR Supercomputer 
(from www.sgi.com) 
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The most interventionist form of parallelisation is termed 
explicit distributed memory parallel programming. Each 
processor remains associated with its own local memory 
during program execution. The programming paradigms BSP 
(Bulk Synchronous Processing) and MPI (Message Passing 
Interface) [15], both of which are supported on OSCAR, 
enable the user to control the transfer of data between 
processors during program execution. A greater level of 
understanding of the system architecture is required; in 
particular the times taken for transfers between different parts 
of memory. The approach may utilise the parallel resource in 
the most efficient manner, but the same source code may not 
be compiled and run on a serial machine, so the overhead in 
program development is greater. 
 

5 Transferring the serial FE code to 
OSCAR 

 
To exploit this new computing resource, it was first necessary 
to move the OXFEM finite element program to OSCAR, and 
adapt it to run in parallel. OpenMP parallel directives for 
shared memory programming were used since this appeared 
to be a simple procedure that maintained a single code for use 
on serial or parallel platforms. 
     Parallelising an existing serial program first involves 
identifying the sections of the code that can be parallelised 
while maintaining correct functioning. The serial code is then 
optimised. Ideally, only then should parallel directives be 
inserted, and the parallel code then optimised for maximum 
speed-up and efficiency, which are defined as follows: 

• Speed-up, 
p

p T
TS 1=  

where 1T is the run-time on a single processor and pT the 

run-time on p processors.  

• Efficiency, %100×= p
S

E p
p  

5.1 Profiling 
 

The first stage of the move to OSCAR involved examining 
the serial code. A profiling program, speedshop was used for 
this purpose. This program provides a number of utilities for 
performance tuning. Different ‘experiments’ may be run, 
giving information, for example, on the CPU time spent in 
each subroutine in the program or, alternatively, the number 
of cache misses and floating point exceptions.  
 

The CPU timings for the individual subroutines in the 
original serial version of OXFEM, running a medium-sized 
analysis are given in Figure 10. This Figure is taken from 
speedshop output and gives the CPU seconds spent in the 
subroutine named in the final column. The preceding 
columns give the time in seconds and the percentage overall. 
Listing is in descending order. The output indicates that 
98.3% of the analysis time is spent exclusively in the 
subroutine frontl. (This routine implements the Frontal 
solution method, as described above).  The profiling therefore 
quickly indicated where effort should be put into optimisation 
and parallelisation. 

 
By breaking a subroutine down into smaller subroutines it 

is possible to concentrate on the sections of code where most 
analysis time is spent. In the case of the frontl subroutine 
attention focussed on the few lines which carry out the 
elimination of the degrees of freedom from the Front matrix. 
(Once all elements that contribute element stiffness terms to a 
degree of freedom in the mesh have been assembled, the 
coefficients in the structure stiffness matrix for that term may 
be eliminated. Operations then continue on a much smaller 
Front matrix of active degrees of freedom). As an initial 
experiment, OpenMP parallel directives were placed around 
these lines. Figure 11 shows a code fragment including the 
OpenMP directives. 

 
 
 

-------------------------------------------------------------------------
Function list, in descending order by exclusive time
-------------------------------------------------------------------------
 [index]  excl.secs excl.%   cum.%  incl.secs incl.%    samples  procedure  (dso: file, line)

     [2]    301.440  98.3%   98.3%    301.470  98.4%      10049  frontl (oxfem_seq: frontl.f90, 1)
     [6]      0.570   0.2%   98.5%      0.570   0.2%         19  ms_mult_d (oxfem_seq: matrix.f90, 853)
     [8]      0.510   0.2%   98.7%      0.510   0.2%         17  input (oxfem_seq: input.f90, 1)
     [4]      0.330   0.1%   98.8%      1.200   0.4%         40  force_shell (oxfem_seq: force_shell_sub.f90, 1)
    [16]      0.150   0.0%   98.9%      0.150   0.0%          5  report_alloc_realm (oxfem_seq: alloc_report.f90, 42)
    [18]      0.120   0.0%   98.9%      0.120   0.0%          4  m_mult_d (oxfem_seq: matrix.f90, 557)
    [19]      0.120   0.0%   98.9%      0.120   0.0%          4  ms_mult_iw (oxfem_seq: matrix.f90, 809)
    [11]      0.090   0.0%   99.0%      0.300   0.1%         10  initia (oxfem_seq: initia.f90, 1)
    [22]      0.090   0.0%   99.0%      0.090   0.0%          3  mincws (oxfem_seq: matrix.f90, 125)
    [20]      0.090   0.0%   99.0%      0.120   0.0%          4  mdet (oxfem_seq: matrix.f90, 42)
    [25]      0.060   0.0%   99.0%      0.060   0.0%          2  codes (oxfem_seq: codes.f90, 1)
    [26]      0.060   0.0%   99.1%      0.060   0.0%          2  g6029 (oxfem_seq: gauss.f90, 2194)
    [27]      0.060   0.0%   99.1%      0.060   0.0%          2  bshell (oxfem_seq: bshell.f90, 1)
    [28]      0.060   0.0%   99.1%      0.060   0.0%          2  mincwm (oxfem_seq: matrix.f90, 108)

Figure 10: CPU times obtained from speedshop experiment 
on unoptimised serial code 
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5.2 Initial parallel code results 
 

The results obtained for speed-up and efficiency, following 
this relatively crude attempt to parallelise the code are shown 
in Figures 12(a) and 12(b) for between 2 and 8 processors. 
Two results sets are given in Figure 12(a): one in which 1T , 

used in the determination of the speed-up, pS  is the run-time 

for a single processor on OSCAR and the second where 1T  is 

the run-time on the fastest serial platform. A maximum 
speed-up of just over four times over the serial platform was 
obtained, with the optimum arrangement being 5 processors. 
It is clear from these plots that a single processor on OSCAR 
is much faster than the serial platform. This is ascribed to the 
more advanced compiler optimisation available on OSCAR. 

Figure 12(b) shows that, although a speed up was 
obtained on OSCAR, the actual efficiency was well below 
optimal, and decreased rapidly with increasing numbers of 
processors used. This indicated that there were probably still 
significant improvements to be gained. These results were, 
however, gratifying given the minimal effort involved. 

 
5.3 A second stage of optimisation 

 
The code fragment in Figure 11, the heart of the Frontal 
solver, shows that elimination across the row of the Frontal 
matrix is split into two loops, one each side of the pivot. It is 
possible to bind these two loops into one, to give improved 
parallel performance.  

In addition, the addresses of array storage in FORTRAN 
90 run column by column rather than row by row. It is, 
therefore, quicker to access consecutive array entries if 
operations proceed down columns, rather than along rows. 
By storing the information in a transpose of the Front matrix, 
and then interchanging the loops in the code shown in Figure 
11, a significant speed up of around 3 was obtained on the 
serial machine, and around 7 on OSCAR with 8 processors. 
 

5.4 Variables and scheduling 
 

Further optimisation of the parallel sections of code is  
possible by considering the declaration of variables used in 
the loops, and the method by which the calculation load was 
shared between the processors, the latter being termed 
scheduling.  

The OpenMP standard allows the declaration of variables 
occurring in a parallel region of code as either PRIVATE, 
meaning that each processor keeps its own copy of the 
variable, or SHARED; the latter being the default. When a 
particular processor accesses a shared variable, a lock is put 
on address in memory to prevent it being accessed or updated 
by another. Other processors must wait until the lock is 
released before using the variable, which has a time penalty. 
Often the compiler can determine automatically whether the 
variable should logically be PRIVATE (for example the loop 
indices I and J in the code fragment in Figure 11). In 
optimising the OXFEM code, it was apparent, however, that 
it was necessary to explicitly declare the factor MULT in 
Figure 10 as PRIVATE for greater efficiency. 

A number of types of scheduling are available in 
OpenMP. In static scheduling, each processor is given an 
equal number of iterations of the parallelised ‘DO’ loop to 
execute. In dynamic scheduling, a processor is given a 
smaller parcel of the total calculation load, and on completion 
of each, requests a new parcel. Dynamic scheduling is often 
more efficient when the amount of calculation load varies 
between loop increments, but incurs an overhead each time a 
processor requests new work.  

The elimination carried out in the frontl subroutine, where 
attention has been focussed, involves the same number of 
floating-point operations per loop. The loop-counter changes 
between eliminations but this happens outside the parallel 
region. Static scheduling is therefore most appropriate and 
likely to yield improvements in performance in this case. 

Figure 13 shows the same section of the frontl subroutine 
following implementation of the variable declarations and 

<snip>
RPIV = 1.0_dp / FRONT(LL,LL)
!$OMP PARALLEL DO
do L = 1, LL - 1
  MULT = FRONT(L,LL)*RPIV
  FRONT(L,1:LWFRON) = FRONT(L,1:LWFRON) - FRONT(LL,1:LWFRON)*MULT
  GLOAD(L) = GLOAD(L) - GLOAD(LL)*MULT
end do
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
do L = LL + 1, LWFRON
  MULT = FRONT(L,LL)*RPIV
  FRONT(L,1:LWFRON) = FRONT(L,1:LWFRON) - FRONT(LL,1:LWFRON)*MULT
  GLOAD(L) = GLOAD(L) - GLOAD(LL)*MULT
end do
!$OMP END PARALLEL DO
<snip>

Figure 11: First stage parallelisation of Frontal solver 
routine 
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scheduling described above. Figure 14 shows the change in 
performance of the machine relative to that with the code in 
Figure 11, expressed in terms of the time taken to execute 
one load step of the large Mansion House model (Fig. 7). The 

Figures show that the time taken per step has been reduced 
from about 20 minutes to less than 4 minutes (with 8 
processors). The importance of this is that a full analysis with 
500 steps becomes viable; finishing in about 33 hours, as 
compared to nearly 1 week before these relatively simple 
changes were added.  

A slight reduction in wall clock time is obtained by 
increasing to 16 or 32 processors, as Figure 14 indicates, but 
the efficiency reduces. All experience with OSCAR and the 
analyses described here has shown this problem to be most 
suitable for between 8 and 16 processors. The reasons for this 
are thought to be the nature of the algorithms employed in 
OXFEM, although further work is necessary to be certain of 
this. Storage of the Frontal matrix in cache local to the 
processor, using the OpenMP directives appears to be a 
profitable next step to take in optimisation.  

6 Future work 
 

The development of the finite element code described here is 
a constant process. Porting the code to OSCAR is one aspect 
of this work. The next logical step in parallelisation of the 
code is the use of MPI or BSP distributed memory 
paradigms. Since this approach is likely to need a full re-
write of the code, it is thought that the extra investment 
required in learning these new techniques is unlikely to be 
balanced by proportional gains in speed-ups and efficiency or 
comparable to those found in this first stage of parallelisation. 
This is probably due to the relative simplicity of the 
algorithms used here. 

As indicated above, future development of OXFEM, to 
cope with non-linear analyses with over 50,000 degrees of 
freedom, is likely to include investigation of iterative solution 
techniques, which require less memory during execution [16, 
17]. Multi-frontal methods are also available [18] for 
implementation and use on OSCAR. The use of OXFEM for 
soil/structure interaction problems other than tunnelling is 
also likely and this will, doubtless prompt the development of 
new simulation techniques within the finite element code.  

<snip>
RPIV = 1.0_dp / FRONT_T(LL,LL)
GLOAD_LL = GLOAD(LL)
ELIM_COLUMN = FRONT_T(1:LWFRON, LL)
!$OMP PARALLEL PRIVATE(MULT, J, L)
!$OMP& SHARED(LWFRON,FRONT_T,ELIM_COLUMN,RPIV,GLOAD,GLOAD_LL,LL)
!$OMP DO SCHEDULE(STATIC)
do L = 1, LWFRON
  MULT = FRONT_T(LL,L)*RPIV
  do J = 1, LWFRON
    FRONT_T(J,L) = FRONT_T(J,L) - ELIM_COLUMN(J) * MULT
  end do
  GLOAD(L) = GLOAD(L) - GLOAD_LL*MULT
end do
!$OMP END DO
!$OMP END PARALLEL
<snip>

Figure 13: Second stage parallelisation of Frontal solver routine 
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7 Concluding Remarks 
 

The move across to the OSCAR Supercomputer has made 
feasible the analysis of significantly larger 3-D non-linear 
finite element models of tunnelling. These models are being 
used to develop improved predictive methods for the effects 
of tunnelling settlement damage on surface structures. 

The process of optimising the code for parallel execution 
has also stimulated improvements to the serial version of the 
code. The move to parallel analyses was relatively 
straightforward because of the algorithm used and the choice 
of parallel paradigm. Profiling reveals that most of the 
computational effort, in this finite element code, is 
concentrated in a few lines. Once identified, various additions 
in this area of the code, using OpenMP directives have led to 
major reductions in the run-times. 
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