
 85

Abstract

A complex three-dimensional finite element model has been
developed to study the effects of tunnel construction on
adjacent structures. The model uses an in-house finite
element code in which complex simulations and non-linear
material models have been developed. This paper describes
the transfer of this code to a large parallel computer, and the
improvements in performance that resulted from the move.
The examination of the code, which was necessary for the
transfer, also led to improvements in the serial version.

1 Introduction

Numerical modelling of geotechnical engineering problems
has been carried out in the Civil Engineering Research Group
at Oxford since 1980. Finite element analysis is performed
using the in-house finite element program, OXFEM, written
in Fortran 90 and running on Unix workstations. A particular
area of interest of the group, since 1992, has been the
modelling of soft ground tunnelling and the interaction
between the effects of tunnel construction and surface
structures. A complex model, including simulation of tunnel
construction and a surface structure has been developed
(Augarde [1], Liu [2]) and is currently being improved and
validated against field data (Augarde et al. [3], Bloodworth &
Houlsby [4]).

A significant aspect of this research is the use of three-
dimensional analysis. Two-dimensional simulations of
tunnel-building interaction are only satisfactory for very
simple geometries. A second feature is the use of non-linear
material models. An overconsolidated clay deposit is
modelled using a weakly non-linear, elasto-plastic
formulation. Masonry, for building facades, is modelled
using a strongly non-linear elastic-no-tension formulation.
The combination of large numbers of degrees of freedom,
and the use of an incremental solution technique, to deal with
the non-linearities present, leads to large analyses, in terms of
memory and run-times. The recent acquisition of a
supercomputer at Oxford, with a limited number of users, has
allowed more complex analyses to be undertaken.

This paper describes the transfer of the finite element
code to the new parallel computer. The paper begins with a
detailed background to the current research into tunnelling, to
demonstrate the need for three-dimensional modelling. Some

results are presented of analyses on workstations and the
limitations are highlighted. This is followed by a description
of the Oxford Supercomputer, OSCAR. The transfer of the
existing finite element code, OXFEM, to the parallel
computer is detailed and the improvements in performance
are discussed. Apart from making more complex analyses
feasible, the process of transfer has highlighted some
improvements of the serial code, which have also been
implemented.

2 Numerical modelling of tunnelling-
induced settlement damage to
structures

Tunnelling is a popular solution for the expansion of
infrastructure in urban areas, since the impact of the final
scheme on the environment is usually small compared to
surface alternatives. The locations of many major cities are
low-lying or coastal, where the near-surface geology
typically involves a significant depth of unlithified deposits,
leading to soft ground tunnelling conditions. In these
conditions it is necessary to provide permanent ground
support to the faces of a tunnel in the form of a lining.

Trough parameters: i = distance from centreline to point
of inflexion; Smax = maximum settlement

Figure 1: Section through circular tunnel driven beneath a
building showing assumed “greenfield” settlement trough.

Building
Outline

Settlement
Trough Tunnel

i

Smax

 86

The installation of a lining involves the excavation of a void
of a larger diameter than the finished tunnel. An annular void
is therefore created, between the lining and the excavated
faces, into which the surrounding soil is able to move. In
addition, soil is able to deform and flow towards the
advancing tunnel face. In soft ground, the effect of these
movements will be seen at the surface as settlements, which
may have significant and potentially damaging effects on
surface structures of historical or national importance. Much
effort and expense has therefore been devoted to limiting
ground movements in tunnelling schemes. Expensive
accommodation works, such as compensation grouting, have
been used, on schemes such as the Jubilee Line Extension in
London, to prevent tunnelling settlements affecting particular
structures.

The prediction of the magnitude of tunnelling settlements
is relatively straightforward at “greenfield” sites, through
empirical rules calibrated against past field data. The
transverse settlement trough is assumed, in this case, to be an
inverted Gaussian distribution [5], as indicated in Figure 1.
There is, however, little guidance on the effect of a surface
structure above the tunnel on a settlement trough.
Consequently, little is known of the potential damage to a
structure due to tunnelling-induced settlement, where this
interaction occurs.

2.1 Damage prediction methods

 Current practice usually relies on the approaches of Burland
and Wroth [6] or Boscardin and Cording [7]. Both assume the
settlement of a building to follow a profile predicted for a
“greenfield” site (Fig. 1). Measures of damage based on the
maximum tensile strain in the building are then used. The
building is idealised as a linear elastic deep beam. This
approach, neglecting the possible effects of the building
weight and stiffness, is usually conservative and provides
little indication of the localised damage seen in real structures
affected by settlements.

Improvements to the approach outlined above have been
sought, in recent years, to produce reliable predictive tools
that include soil-structure interaction. Two-dimensional
finite element modelling is used by Potts and Addenbrooke
[8] to generate modification factors to apply to the
“greenfield” settlement trough to allow for building stiffness.
This approach, while giving a useful indication of some of
the interaction effects, is limited in its application to
problems which may be reasonably represented in two-
dimensions, and where the building weight is not a
significant factor. This study also provides no information on
localised building damage.

2.2 A three-dimensional finite element model of
tunnelling.

A research programme has been in progress since 1992 at
Oxford to develop and use an improved numerical model of
tunnelling for the prediction of settlement damage. This
research has concentrated on masonry buildings located
above overconsolidated clay soil [9].

The approach taken in this research is new, mainly
because the problem is modelled in three dimensions rather
than two. This is judged essential to represent adequately the
geometry of a tunnel constructed beneath a building. Three-
dimensional modelling allows the unambiguous
representation of the true orientation of the building relative
to the tunnel, and allows the incremental advance of the
tunnel heading to be simulated.

Figure 2: A plot in principal stress space of nested yield
surfaces after a stress path from the origin to A and back.

σ1

σ3σ2

A

Figure 3: Elastic no-tension material model for masonry

 87

The numerical model developed incorporates procedures for
modelling excavation of the tunnel volume and lining
installation [1]. The primary source of surface settlements,
the volume loss due to the over-excavation of the real tunnel
(as described above), is simulated by shrinking the lining.
The lining is modelled with faceted shell elements [10, 11],
where bending stiffness arises from a novel overlapping
scheme, rather than through shape functions involving
rotational terms, as in conventional shell elements.

The choice of material models for the ground and
structure is vital for the accuracy of the final solution. The
types of non-linearities that occur in the problem have been
identified. Overconsolidated clay, in the undrained condition
to approximate London Clay, exhibits a gradual change in
stiffness at small strains. This is modelled by a nested-surface
work-hardening plasticity model described in detail by
Houlsby [12]. This type of constitutive model is able to
capture the stress-strain history of an overconsolidated soil,
now recognised to be of crucial importance in the
determination of its subsequent behaviour. This is
accomplished with nested von Mises surfaces as shown in
Figure 2.

Building masonry on the other hand is a brittle material,
experiencing an abrupt change of state in tension, moving
from an uncracked elastic state to a cracked state with almost
complete loss of stiffness normal to the crack direction. A
material model has been implemented which models cracking

and subsequent crack reclosure [2]. The stress-strain
behaviour of this model is illustrated in Figure 3.

A final innovative feature of this model is a numerical

scheme to “tie” a two-dimensional finite element mesh to one
in three-dimensions [2, 13]. This is used to attach two-
dimensional meshes, representing building facades, onto a
three-dimensional mesh of the ground in which tunnel
excavation is simulated. Openings in the facades may be
represented either as holes in the mesh or as regions of
reduced stiffness [4].

The complete model was demonstrated by Augarde [1]
for a simple tunnelling scheme, involving a masonry building
at a skewed angle to a tunnel. Figure 4 shows some details of
this analysis and the meshes used for the ground and the
building. Currently, work is underway to collect field data of
buildings subjected to tunnelling settlement and to conduct
verification analyses with the model [4]. A detail of the finite
element mesh of one of these analyses is shown in Figure 5.
In this case, a shaft is excavated close to the corner of a
masonry church building. The structure is rectangular in plan
with a number of openings in the facades. The predicted
settlements on the surface of the combined model of ground,
shaft and building are shown in Figure 6. The effect of the
building in distorting the shape of the settlement bowl around
the shaft is evident from this plot.

Figure 4: Demonstration model for 3-D analysis of a tunnel, ground and masonry building

20m

8
m

Building mesh

Front facade

60

5
0

100

45o

building

base outline

30

30

tunnel

excavation

stages

Ground mesh

3541 nodes

2243 solid elements

640 lining elements

vertical faces

free to move

vertically only

base

fixed

20

20

10

10

Solid model of ground

and tunnel (all dims in metres)

 88

3 Serial analysis

3.1 Computational procedures

The use of the model of tunnelling described above, is
complex and includes considerable pre- and post-processing
stages. Mesh generation is carried out using the commercial
analysis package I-DEAS. Unstructured meshing is used for
the soil mesh, with partitioning to provide blocks of elements
for excavation simulation. Unstructured meshing enables
greater control over local element lengths where more detail
is required, around the tunnel and the building footprint.

A variety of Unix workstations have been used to conduct
this research, prior to and since the arrival of the Oxford

Supercomputer. At present, the fastest serial platform
available to the Group is a Sun Microsystems Ultra 2, having
two 300 MHz processors and 512Mb of RAM.

The solution procedure adopted in the finite element

program OXFEM is a highly optimised implementation of
the Frontal method. While this method has proved adequate
for this research to date, iterative solution techniques are also
under investigation. prompted by the considerable debate, at
present, as to the viability of iterative solution techniques
with geotechnical material models [14]. These techniques,
however, appear to provide the most promising way to
conduct the very large analyses planned for the future.

3.2 Performance

The demonstration analyses, such as that shown in Figure 4,
require many degrees of freedom, even with relatively coarse
meshes. The mix of non-linearities, described above, leads to
a large number of incremental load steps. The combination of
these two features leads to very long run-times. The
verification analyses [4], for comparison to field data, use
even larger and more complex models than shown in Figure
4. This is necessary to model adequately the geometry and
level of detail of a practical site. For models with over 30,000
degrees of freedom, and up to 500 load steps to model a
tunnel advance, run-times of one to two weeks are required
on the fastest serial platform. One cause of these excessive
run-times is the need to use memory well in excess of the
RAM during execution.

Figure 7 shows the ground mesh for a recent verification
analyses. A model with 40,000 degrees of freedom is
necessary to model the construction of an underground
railway tunnel beneath the Mansion House in London
(construction completed in 1991). The viability of this
analysis on the serial platform is dubious since run-time for a
single load step, of which there are 500 in the whole analysis,
is 1.5 hours.

Figure 5: Detail of finite element mesh for shaft and church
at Maddox Street

Figure 7: Verification analysis - model of tunnelling beneath
Mansion House, London

105m
65m

30m

30m60m

Tunnel 3.35m φ

Figure 6: Surface settlements obtained from analysis of
model shown in Figure 5.

Settlement, m

 89

4 The OSCAR Supercomputer

4.1 Background and history

The Oxford Supercomputing Centre (OSC) was established
in 1998, with a mission to promote multi-disciplinary
research in the application of high performance computing,
particularly in parallel analysis techniques. Funding for the
centre came from an approximately £1.4m grant under the
UK Higher Education Funding Council (HEFCE) Joint
Research Equipment Initiative, with additional support from
Silicon Graphics Inc. (SGI). The main resource is the Oxford
Supercomputer, OSCAR commissioned in June 1998.

Nineteen research groups at Oxford, covering a wide
range of disciplines in science and engineering have access to
the supercomputer. As well as civil engineering, research on
OSCAR is in other branches of engineering science and in
biochemistry, bioinformatics, biophysics, computing, earth
sciences, materials, physics, physical and theoretical
chemistry and physiology. The research groups involved
share similar interests in large-scale, often mesh-based,
numerical modelling.

The OSC is funded for a three-year period initially, from
April 1998. In addition to maintaining and managing the
system, including running a batch queue system for
maximum utilisation of the resource, the OSC provides
training and advice on parallel computing methods, including
arranging outside speaker meetings, and facilitates contact
and dissemination of knowledge between the member
research groups.

OSCAR is an SGI Cray Origin 2000 supercomputer,
similar in appearance to Figure 8, currently having 84 No.
R10000 MIPS processors (upgradable to 128), 21GB of
RAM and 256GB of disc storage. A group may make use of
any number of processors at one time, with the CPU and
memory usage charged to a notional account. The processors
are physically arranged in pairs with RAM and access to disk
space, to form modules, which in turn communicate via the
Craylink interconnector (Fig. 9).

The peak processor speed is 195Mhz, 780 MIPS or 390
MFLOPS (2 integer plus 2 floating point execute and one
load/store per cycle). The peak computing power is 32
GFLOPS. The architecture is CC-NUMA (cache coherent,
non-uniform memory architecture). This means that the
memory, although physically distributed on the nodes of the
machines, behaves as one large block of shared memory.
Access times to memory vary from 1 cycle to 100 cycles,

depending on whether the data is stored in the local cache of
the processor or in the memory or cache of a processor in a
remote module.

4.2 Parallel programming paradigms

The FORTRAN 77, FORTRAN 90, C and C++ programming
languages are available on OSCAR via its SGI MIPSpro
compilers. Programs may be compiled and run in serial form,
but the preference is for OSCAR to be used for parallel
programming, for which a number of models are available.
The first is automatic parallelisation, in which the compiler
parallelises the source code without further user intervention.
This may be suitable for simple programs but is less efficient
for more complex code and is not often used.

Shared memory parallelisation uses directives inserted by
the user in the source code, which appear as comments to a
serial compiler. These directives instruct the compiler where
to compile the code for parallel execution. OSCAR supports
the OpenMP standard for such directives. This parallelisation
method takes full advantage of the shared memo ry
architecture; the user is not concerned about how the memory
is allocated across different processors, nor how and when
communication between processors occurs. It also has the
advantage that the same source code may be compiled and
run on a serial machine. This feature has practical advantages
for program development with this project, since serial
running continues side-by-side with the use of OSCAR.
Extensions to the OpenMP directive set allow some user
intervention over memory allocation if desired.

Figure 8: An SGI Origin 2000 supercomputer (from
www.sgi.com)

Figure 9: Physical structure of OSCAR Supercomputer
(from www.sgi.com)

 90

The most interventionist form of parallelisation is termed
explicit distributed memory parallel programming. Each
processor remains associated with its own local memory
during program execution. The programming paradigms BSP
(Bulk Synchronous Processing) and MPI (Message Passing
Interface) [15], both of which are supported on OSCAR,
enable the user to control the transfer of data between
processors during program execution. A greater level of
understanding of the system architecture is required; in
particular the times taken for transfers between different parts
of memory. The approach may utilise the parallel resource in
the most efficient manner, but the same source code may not
be compiled and run on a serial machine, so the overhead in
program development is greater.

5 Transferring the serial FE code to
OSCAR

To exploit this new computing resource, it was first necessary
to move the OXFEM finite element program to OSCAR, and
adapt it to run in parallel. OpenMP parallel directives for
shared memory programming were used since this appeared
to be a simple procedure that maintained a single code for use
on serial or parallel platforms.
 Parallelising an existing serial program first involves
identifying the sections of the code that can be parallelised
while maintaining correct functioning. The serial code is then
optimised. Ideally, only then should parallel directives be
inserted, and the parallel code then optimised for maximum
speed-up and efficiency, which are defined as follows:

• Speed-up,
p

p T
TS 1=

where 1T is the run-time on a single processor and pT the

run-time on p processors.

• Efficiency, %100×= p
S

E p
p

5.1 Profiling

The first stage of the move to OSCAR involved examining
the serial code. A profiling program, speedshop was used for
this purpose. This program provides a number of utilities for
performance tuning. Different ‘experiments’ may be run,
giving information, for example, on the CPU time spent in
each subroutine in the program or, alternatively, the number
of cache misses and floating point exceptions.

The CPU timings for the individual subroutines in the
original serial version of OXFEM, running a medium-sized
analysis are given in Figure 10. This Figure is taken from
speedshop output and gives the CPU seconds spent in the
subroutine named in the final column. The preceding
columns give the time in seconds and the percentage overall.
Listing is in descending order. The output indicates that
98.3% of the analysis time is spent exclusively in the
subroutine frontl. (This routine implements the Frontal
solution method, as described above). The profiling therefore
quickly indicated where effort should be put into optimisation
and parallelisation.

By breaking a subroutine down into smaller subroutines it

is possible to concentrate on the sections of code where most
analysis time is spent. In the case of the frontl subroutine
attention focussed on the few lines which carry out the
elimination of the degrees of freedom from the Front matrix.
(Once all elements that contribute element stiffness terms to a
degree of freedom in the mesh have been assembled, the
coefficients in the structure stiffness matrix for that term may
be eliminated. Operations then continue on a much smaller
Front matrix of active degrees of freedom). As an initial
experiment, OpenMP parallel directives were placed around
these lines. Figure 11 shows a code fragment including the
OpenMP directives.

Function list, in descending order by exclusive time

 [index] excl.secs excl.% cum.% incl.secs incl.% samples procedure (dso: file, line)

 [2] 301.440 98.3% 98.3% 301.470 98.4% 10049 frontl (oxfem_seq: frontl.f90, 1)
 [6] 0.570 0.2% 98.5% 0.570 0.2% 19 ms_mult_d (oxfem_seq: matrix.f90, 853)
 [8] 0.510 0.2% 98.7% 0.510 0.2% 17 input (oxfem_seq: input.f90, 1)
 [4] 0.330 0.1% 98.8% 1.200 0.4% 40 force_shell (oxfem_seq: force_shell_sub.f90, 1)
 [16] 0.150 0.0% 98.9% 0.150 0.0% 5 report_alloc_realm (oxfem_seq: alloc_report.f90, 42)
 [18] 0.120 0.0% 98.9% 0.120 0.0% 4 m_mult_d (oxfem_seq: matrix.f90, 557)
 [19] 0.120 0.0% 98.9% 0.120 0.0% 4 ms_mult_iw (oxfem_seq: matrix.f90, 809)
 [11] 0.090 0.0% 99.0% 0.300 0.1% 10 initia (oxfem_seq: initia.f90, 1)
 [22] 0.090 0.0% 99.0% 0.090 0.0% 3 mincws (oxfem_seq: matrix.f90, 125)
 [20] 0.090 0.0% 99.0% 0.120 0.0% 4 mdet (oxfem_seq: matrix.f90, 42)
 [25] 0.060 0.0% 99.0% 0.060 0.0% 2 codes (oxfem_seq: codes.f90, 1)
 [26] 0.060 0.0% 99.1% 0.060 0.0% 2 g6029 (oxfem_seq: gauss.f90, 2194)
 [27] 0.060 0.0% 99.1% 0.060 0.0% 2 bshell (oxfem_seq: bshell.f90, 1)
 [28] 0.060 0.0% 99.1% 0.060 0.0% 2 mincwm (oxfem_seq: matrix.f90, 108)

Figure 10: CPU times obtained from speedshop experiment
on unoptimised serial code

 91

5.2 Initial parallel code results

The results obtained for speed-up and efficiency, following
this relatively crude attempt to parallelise the code are shown
in Figures 12(a) and 12(b) for between 2 and 8 processors.
Two results sets are given in Figure 12(a): one in which 1T ,

used in the determination of the speed-up, pS is the run-time

for a single processor on OSCAR and the second where 1T is

the run-time on the fastest serial platform. A maximum
speed-up of just over four times over the serial platform was
obtained, with the optimum arrangement being 5 processors.
It is clear from these plots that a single processor on OSCAR
is much faster than the serial platform. This is ascribed to the
more advanced compiler optimisation available on OSCAR.

Figure 12(b) shows that, although a speed up was
obtained on OSCAR, the actual efficiency was well below
optimal, and decreased rapidly with increasing numbers of
processors used. This indicated that there were probably still
significant improvements to be gained. These results were,
however, gratifying given the minimal effort involved.

5.3 A second stage of optimisation

The code fragment in Figure 11, the heart of the Frontal
solver, shows that elimination across the row of the Frontal
matrix is split into two loops, one each side of the pivot. It is
possible to bind these two loops into one, to give improved
parallel performance.

In addition, the addresses of array storage in FORTRAN
90 run column by column rather than row by row. It is,
therefore, quicker to access consecutive array entries if
operations proceed down columns, rather than along rows.
By storing the information in a transpose of the Front matrix,
and then interchanging the loops in the code shown in Figure
11, a significant speed up of around 3 was obtained on the
serial machine, and around 7 on OSCAR with 8 processors.

5.4 Variables and scheduling

Further optimisation of the parallel sections of code is
possible by considering the declaration of variables used in
the loops, and the method by which the calculation load was
shared between the processors, the latter being termed
scheduling.

The OpenMP standard allows the declaration of variables
occurring in a parallel region of code as either PRIVATE,
meaning that each processor keeps its own copy of the
variable, or SHARED; the latter being the default. When a
particular processor accesses a shared variable, a lock is put
on address in memory to prevent it being accessed or updated
by another. Other processors must wait until the lock is
released before using the variable, which has a time penalty.
Often the compiler can determine automatically whether the
variable should logically be PRIVATE (for example the loop
indices I and J in the code fragment in Figure 11). In
optimising the OXFEM code, it was apparent, however, that
it was necessary to explicitly declare the factor MULT in
Figure 10 as PRIVATE for greater efficiency.

A number of types of scheduling are available in
OpenMP. In static scheduling, each processor is given an
equal number of iterations of the parallelised ‘DO’ loop to
execute. In dynamic scheduling, a processor is given a
smaller parcel of the total calculation load, and on completion
of each, requests a new parcel. Dynamic scheduling is often
more efficient when the amount of calculation load varies
between loop increments, but incurs an overhead each time a
processor requests new work.

The elimination carried out in the frontl subroutine, where
attention has been focussed, involves the same number of
floating-point operations per loop. The loop-counter changes
between eliminations but this happens outside the parallel
region. Static scheduling is therefore most appropriate and
likely to yield improvements in performance in this case.

Figure 13 shows the same section of the frontl subroutine
following implementation of the variable declarations and

<snip>
RPIV = 1.0_dp / FRONT(LL,LL)
!$OMP PARALLEL DO
do L = 1, LL - 1
 MULT = FRONT(L,LL)*RPIV
 FRONT(L,1:LWFRON) = FRONT(L,1:LWFRON) - FRONT(LL,1:LWFRON)*MULT
 GLOAD(L) = GLOAD(L) - GLOAD(LL)*MULT
end do
!$OMP END PARALLEL DO
!$OMP PARALLEL DO
do L = LL + 1, LWFRON
 MULT = FRONT(L,LL)*RPIV
 FRONT(L,1:LWFRON) = FRONT(L,1:LWFRON) - FRONT(LL,1:LWFRON)*MULT
 GLOAD(L) = GLOAD(L) - GLOAD(LL)*MULT
end do
!$OMP END PARALLEL DO
<snip>

Figure 11: First stage parallelisation of Frontal solver
routine

 92

scheduling described above. Figure 14 shows the change in
performance of the machine relative to that with the code in
Figure 11, expressed in terms of the time taken to execute
one load step of the large Mansion House model (Fig. 7). The

Figures show that the time taken per step has been reduced
from about 20 minutes to less than 4 minutes (with 8
processors). The importance of this is that a full analysis with
500 steps becomes viable; finishing in about 33 hours, as
compared to nearly 1 week before these relatively simple
changes were added.

A slight reduction in wall clock time is obtained by
increasing to 16 or 32 processors, as Figure 14 indicates, but
the efficiency reduces. All experience with OSCAR and the
analyses described here has shown this problem to be most
suitable for between 8 and 16 processors. The reasons for this
are thought to be the nature of the algorithms employed in
OXFEM, although further work is necessary to be certain of
this. Storage of the Frontal matrix in cache local to the
processor, using the OpenMP directives appears to be a
profitable next step to take in optimisation.

6 Future work

The development of the finite element code described here is
a constant process. Porting the code to OSCAR is one aspect
of this work. The next logical step in parallelisation of the
code is the use of MPI or BSP distributed memory
paradigms. Since this approach is likely to need a full re-
write of the code, it is thought that the extra investment
required in learning these new techniques is unlikely to be
balanced by proportional gains in speed-ups and efficiency or
comparable to those found in this first stage of parallelisation.
This is probably due to the relative simplicity of the
algorithms used here.

As indicated above, future development of OXFEM, to
cope with non-linear analyses with over 50,000 degrees of
freedom, is likely to include investigation of iterative solution
techniques, which require less memory during execution [16,
17]. Multi-frontal methods are also available [18] for
implementation and use on OSCAR. The use of OXFEM for
soil/structure interaction problems other than tunnelling is
also likely and this will, doubtless prompt the development of
new simulation techniques within the finite element code.

<snip>
RPIV = 1.0_dp / FRONT_T(LL,LL)
GLOAD_LL = GLOAD(LL)
ELIM_COLUMN = FRONT_T(1:LWFRON, LL)
!$OMP PARALLEL PRIVATE(MULT, J, L)
!$OMP& SHARED(LWFRON,FRONT_T,ELIM_COLUMN,RPIV,GLOAD,GLOAD_LL,LL)
!$OMP DO SCHEDULE(STATIC)
do L = 1, LWFRON
 MULT = FRONT_T(LL,L)*RPIV
 do J = 1, LWFRON
 FRONT_T(J,L) = FRONT_T(J,L) - ELIM_COLUMN(J) * MULT
 end do
 GLOAD(L) = GLOAD(L) - GLOAD_LL*MULT
end do
!$OMP END DO
!$OMP END PARALLEL
<snip>

Figure 13: Second stage parallelisation of Frontal solver routine

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9

No. of processors

E
ff

ic
ie

n
cy

 (
%

)

Efficiency wrt OSCAR
single processor

Figure 12: Speed-up and efficiency on OSCAR after the
first stage of parallelisation

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

No. of processors

S
p

e
e

d
 u

p

Speed up wrt OSCAR
single processor

Speed up wrt standard
workstn.

(a)

(b)

 93

7 Concluding Remarks

The move across to the OSCAR Supercomputer has made
feasible the analysis of significantly larger 3-D non-linear
finite element models of tunnelling. These models are being
used to develop improved predictive methods for the effects
of tunnelling settlement damage on surface structures.

The process of optimising the code for parallel execution
has also stimulated improvements to the serial version of the
code. The move to parallel analyses was relatively
straightforward because of the algorithm used and the choice
of parallel paradigm. Profiling reveals that most of the
computational effort, in this finite element code, is
concentrated in a few lines. Once identified, various additions
in this area of the code, using OpenMP directives have led to
major reductions in the run-times.

Acknowledgements

This research programme has been supported by the
Engineering and Physical Sciences Research Council, the
SBFSS Foundation, Howard Humphreys Consulting
Engineers, the Royal Commission for the Exhibition of 1851
and Oxford University. Calculations described in this paper
were performed at the Oxford Supercomputing Centre.

References

[1] Augarde, C.E. "Numerical modelling of tunnelling
processes for assessment of damage to buildings",
DPhil Thesis, Oxford University, (1997)

[2] Liu, G., "Numerical modelling of damage to masonry
buildings due to tunnelling", DPhil Thesis, Oxford
University, (1997)

[3] Augarde, C.E., C. Wisser & H.J. Burd. “Numerical

modelling of tunnel installation procedures”. Proc. 7th
Int. Symp. Num. Meth. Geomech., NUMOG VII, Graz,
September (in press) (1999).

[4] Bloodworth, A.G. & G.T. Houlsby. “Three-

dimensional analysis of building settlement caused by
shaft construction”. Proc. Int. Symp. Geotech. Aspects
of Underground Construction in soft ground, Tokyo,
July (in press) (1999).

[5] Peck, R.B., “Deep excavations and tunnelling in soft

ground”, Proc. VII Int. Conf. Soil Mechanics and
Foundation Eng., Mexico City, 226-290, (1969).

[6] Burland, J.B. and C.P. Wroth, “Settlement of buildings

and associated damage”, Review Paper, Conference on
Settlement of Structures, Cambridge, Pentech Press.
(1975)

[7] Boscardin, M.D. and E.J. Cording, “Building response

to excavation-induced settlement”, ASCE J.
Geotechnical Eng., 115, 1-21 (1989).

[8] Potts, D.M. and T.I. Addenbrooke, "A structure's

influence on tunnelling-induced ground movements" ,
Proc. ICE Geotechnical Eng., Vol. 125, No.2, April,
109-125, (1997)

[9] Houlsby, G.T., H.J. Burd and C.E. Augarde, “Analysis

of tunnel-induced settlement damage to surface
structures" , Proc. XII European Conference on Soil
Mechanics and Geotechnical Engineering, Amsterdam,
7-10 June, in press, (1999)

[10] Phaal, R. and C.R. Calladine, “A simple class of finite

elements for plate and shell problems II: an element for
thin shells, with only translational degrees of freedom",
Int. J. Numer. Meth. Eng., 35, 979-996, (1992)

[11] Augarde, C.E., H.J. Burd and G.T. Houlsby, “Some

experiences of modelling tunnelling in soft ground
using three-dimensional finite elements”, Proc. 4th
European Conf. on Numerical Methods in Geotechnical
Engineering, Udine, 14-16 October, 603-612 , (1998)

[12] Houlsby, G.T., “A model for the variable stiffness of

undrained clay”, Proc. Int. Symp. On Pre-Failure
Deformation Characteristics of Ge omaterials, Torino,
Sept., in press, (1999).

[13] Houlsby, G.T., G. Liu and C.E. Augarde, “A tying

scheme for imposing displacement constraints in finite
element analysis”, (in preparation).

[14] Smith, I.M., “Parallel coupled analyses in geotechnical

engineering”, Proc. 4th European Conf. on Numerical
Methods in Geotechnical Engineering, Udine, 14-16
October, 25-34, (1998)

Figure 14: Execution time for Mansion House model after
second stage parallelisation

0

5

10

15

20

25

30

35

40

8 16 32 64

N o . o f P r o c e s s o r s

W
al

l c
lo

ck
 ti

m
e

pe
r

st
ep

 (m
in

) B e f o r e l o o p

opt imisa t ion

A f t e r l o o p

opt imisa t ion

 94

[15] Oxford Supercomputing Centre, Training Course Notes,
September , (1998).

[16] Dickinson, J.K. and P.A. Forsyth. “Preconditioned

conjugate gradient methods for three-dimensional
linear elasticity”. Int. J. Numer. Meth. Eng, 37(13),
2211-2234, (1994)

[17] Hladik, , I., M.B. Reed and G. Swoboda “Robust
preconditioners for linear elasticity FEM analyses”.
Int. J. Numer. Meth. Eng, 40(11), 2109-2127, (1995).

[18] Ingle, N.K. and T.J. Mountziaris, “Multifrontal

algorithm for the solution of large systems of equations
using network-based parallel computing”. Computers
and Chemical Eng., 19(6-7), 671-681, (1995).

