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ABSTRACT: Iterative solvers are of increasing interest in geomechanics with the move towards 3D 
finite element modelling. Potentially, these methods can lead to reduced computational complexity 
as, unlike direct methods, they do not require the full system matrix to be assembled. In general, 
however, iterative solvers have not been widely adopted in geomechanics due to problems with 
convergence. This paper reviews the background to iterative methods for elastic and elasto-plastic 
material models. In some cases, existing numerical methods can be taken from research in the 
mathematics community. For other systems, further work is needed. The paper provides 
demonstrations of the capabilities of some strategies. 

1 Introduction 
Numerical modelling in geotechnics is overwhelmingly dominated by the use of finite element (FE) 
methods. They have proved to be robust, relatively easy to use and are available in commercial 
software, with attractive GUIs. As FE software has improved, so have the ambitions of users. For a 
number of years, two-dimensions were “enough” to model the majority of geotechnical problems, 
although this was a decision based on the capabilities of the available codes and often failed to 
satisfy users who wished to use three-dimensional (3D) models. The situation is changing so that 
3D modelling is now becoming feasible with commercial codes, as a result of improvements to 
hardware and software.  
In geotechnics we are faced with particular difficulties when trying to use 3D models because the 
material models are invariably non-linear. This is in addition to the large size (i.e. number of 
variables) involved in most 3D FE models. As a result the improvement of software techniques that 
specifically address the problems in geotechnics is an active area of research. 
The main computational resources used in any FE software are required for  the solution of linear 
systems, produced by a weak formulation of the equations of equilibrium, compatibility and material 
properties. In general, a linear system  
 
 bAx =  (1) 
 
can be solved in two ways, either directly or iteratively. In a direct solution method, the coefficient 
matrix  is assembled, factorized and the unknowns found by back-substitution. Iterative methods A



reach a solution by iterative improvement of an initial guess for . x Importantly, iterative methods do 
not require the assembly of the system coefficient matrix. A solution is assured with a direct solver 
whereas an iterative solver can fail to give a converged solution. Whether or not this occurs 
depends on the nature of the cofficient matrix . Convergence is improved by “preconditioning” 
the system. In this paper we revisit some basic theory indicating the nature of the systems for 
simple material models, which form the basis for most complex material models used in 
geomechanics. We then describe some element-based iterative techniques that might be applicable 
to geotechnical problems. 

A

2 Background 
The choice of preconditioning strategy for an iterative solver is determined by the nature of the 
linear system which it is required to solve, since it is an approximate inverse to that is required. 
In the conventional finite element method the linear system in Equation 1 is usually written, 

A

 
 fKu =  (2) 
 
where  is the vector of nodal displacements,  the force vector and u f K the structure (or system) 
stiffness matrix, which is a square matrix nn× , where  is the number of degrees of freedom in 
the problem. The simplest nonstationary iterative solution method is conjugate gradients (CG), 
originally developed by Hestenes & Stiefel (1952). The algorithm begins with an intial guess for u  
followed by successive updates based on residuals. The method creates search directions that are 
orthogonal so that the method must converge in a maximum of  steps. The convergence rate of 
CG depends on the condition number of 

n

n
K (i.e. the ratio of its largest and smallest eigenvalues). 

Preconditioning accelerates convergence, producing the preconditioned conjugate gradient method 
(PCG) using a preconditioning matrix  as follows: P
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To create the linear system in Equation 2, the problem domain Ω  is discretized into elements 

 each with  degrees of freedom. If the total number of degrees of freedom is n , Ee K1= ne K  
can be determined from individual element stiffness matrices by eK
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where is an  eC nne×  Boolean connectivity matrix associated with element . Element stiffness 
matrices are determined from 

e
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where is the strain-displacement matrix,  the constitutive matrix and the integration is taken 
over the element volume We arrive at Equation 5 by a weak formulation of the underlying PDE, 
i.e. the equations of elasticity plus essential boundary conditions. This weak form can be obtained 
by a Galerkin procedure. Another way, leading to the same system, is to use a variational principle, 
such as minimisation of system potential energy. Engineers often prefer the latter approach as it 
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has a physical basis. 
We can write the potential energy of a body as the sum of internal and external potential energy 
 
 extΠ+Π=Π int  (6) 
 
where 
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In Equation 7, W is strain energy, b and t are body forces and surface tractions, the latter acting 
over the surface . Using the principle of virtual work it is shown in many texts (e.g. Lubliner, 1990) 
that an elastic body is in equilibrium where the potential energy functional in Equation 6 is 
stationary. More significantly for the final linear system, this means that 

S

 
  (8) 0 allfor  0 ≠> εεDεT

 
where  is the strain tensor, written as a column vector, in the usual way. Equation 8 is the 
statement that, for an elastic body, considering “small” deformations, the strain energy cannot 
become negative. The definition of a positive definite matrix is one where the quadratic form is 
positive, which is an equivalent statement to Equation 8 for the matrix , which is therefore 
positive definite. (This important result is rarely stated explicitly in the literature). The consequence 
of the positive-definiteness of D  and Equation 5 is that is also positive definite. (The strain-
displacement matrix does not affect this outcome providing elements are “well-shaped”). For linear 
elasticity, the constitutive matrix is also symmetric so that is symmetric positive definite (spd). 

The Galerkin finite element approximation always produces a symmetric if the PDE and 
boundary conditions are self-adjoint. It can also be shown that perfect and work-hardening plasticity 
lead to positive definite systems because of the non-negativity of the strain energy.  
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Despite the fact that linear elasticity alone is a very poor model to use for soils, it nevertheless 
forms the basis of the majority of constitutive models for soils used in FE analysis. Material 
behaviour is often assumed elastic at low levels of effective stress, although it is usually the 
plasticity model adopted that determines the nature and magnitude of deformations in a 
geotechnical problem. For this reason, development of preconditioning techniques for geotechnics 
problems should begin with linear elasticity, and providing the plasticity is not work-softening, we 
can restrict our search for suitable preconditioners to methods for positive definite systems. 
Considerable published work exists on preconditioning for spd systems resulting from structural 
engineering problems (e.g. Dickinson & Forsyth, 1994; Hladik et al. 1997). Many authors use 
diagonal preconditioning, where . This approach is surprisingly successful given its 
simplicity. In this case, the preconditioner scales the eigenvalues of 

)(KP diag=
K and does not change the 

condition number.  
Using this, the simplest preconditioner, the importance of the Poisson’s ratio to the condition 
number of K can be demonstrated. Table 1 shows iteration counts using diagonal scaling for a 2D 
plane stress square supported on all four sides with arbitrary loads applied. Results are given for 
structured meshes of both constant strain and linear strain triangles. The effect of increasing 
Poisson’s ratio close to incompressibility is clear, and becomes more marked as the element order 
rises. 
 
 



After diagonal preconditioning many authors have tried methods based on incomplete factorizations 
of K (e.g. Saint Georges et al. 1999). A huge variety of techniques have been described in this 
area with little agreement.  

Table 1. Iteration counts for varying element type and Poisson’s ratio. 

 CST LST 
n     

8 23 39 68 142 
32 90 135 301 741 

256 667 996 1258 3111 
 
A common trait of these preconditioning approaches is they work on the structure stiffness matrix 
rather than being based on element-level information. Since geotechnical FE modelling is often 
characterized by a mixture of material models and property values, stiff inclusions such as 
foundations and tunnels, and analyses where stiffness changes (due to yield) it seems improved 
preconditioning methods might be developed working at element level instead, thus including 
information that should improve the preconditioner. Another reason for developing element-based 
methods is their suitability for parallel machines, although all results given below are for serial tests. 

3 Element-based preconditioning 
The conjugate gradient method can be coded to avoid ever having to assemble the structure 
stiffness matrix. Element stiffness matrices can be stored together with the connectivity matrices 

(Equation 4). However, it is not clear at what size of problem an unassembled approach 
becomes faster than an assembled one. Our initial experiments in this area indicate that, if an 
efficient storage scheme is used, such as Compressed Sparse Row (CSR) then an assembled 
approach takes a similar amount of storage to an unassembled one. Since more floating point 
operations are required in the latter, the unassembled approach is slower. We should state that this 
is an interim finding and, as n gets very large, the situation may be reversed as the set-up phase in 
the assembled approach would become time-consuming. What is clear, however, is that memory 
requirements are smaller than required for an optimised frontal (i.e. direct) solver. 

eC

Clearly we can apply the same logic outlined above to the formation of the preconditioning matrix. 
Diagonal preconditioning can be carried out at element level by 
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In the mathematical research community, a number of preconditioning strategies have been 
developed with the name Element-by-Element (EBE) of which the most famous is probably due to 
Hughes et al. (1983). Revised element stiffness matrices eK are formed which are ensured to be 
positive definite by a process called regularisation, 
 

 ( ) 2121 −− −+= GGKGIK eenee  (10) 
 
where  and ( )KG diag= ( )ee diag KG . The diagonal of = eK is the identity.  
 
These revised matrices are then factorised into a lower triangular matrix  eL

4.= 0ν 49.0=ν 4.0=ν 49.0=ν
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Finally the preconditioner is formed by products of the factors 
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Note that for the actual implementation of the preconditioner the whole setup phase is done on an 
element level and no global matrices need be formed. The method does however rely on the 
element nodal numbering increasing in correspondence with the global node numbers, although we 
have found no difficulties in ensuring this in our experiments to date. 
An alternative EBE method is related to the successive over-relaxation technique. The revised 
element stiffness matrices are formed by 
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And the preconditioner is then formed as 
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The performance of the approaches discussed above will now be demonstrated on a number of 
problems. 
The ubiquitous smooth footing problem, modelled in plane strain, is shown in Figure 1.  
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Figure 1. Smooth footing problem 



One half of the footing, of width B is modelled with a square mesh of size 10B. Iteration counts to 
reach a relative residual norm of 1x10-6 are given in Table 2, for a range of mesh refinement, for the 
three element-based preconditioning methods described above. The meshes used here are 
composed of linear strain triangles and are all structured so that each element is identical.  
The results indicate that around half the iterations are required for EBE approaches as compared to 
the diagonal element based preconditioning. However, all methods show similar convergence rates, 
i.e. as the number of unknowns doubles, so does the iteration count, at least approximately. This 
indicates that these methods are unlikely to be competitive, given that the iteration counts may hide 
longer runtimes. It should be recognised that these results are given for serial machines and their 
utility for parallel running is likely to be much greater. 

 
Table 2: Iteration counts for elastic footing problem using element based preconditioning 

 
n 882 3362 7442 13122 20402 29282 39762 51842 65522 80802 

1.0=ν            
DIAG 32 74 117 159 200 242 283 324 366 407 

EBE-HLW 19 38 55 73 91 109 127 146 164 183 
EBE-SSOR 22 41 62 82 102 122 142 161 180 200 

4.0=ν            
DIAG 42 105 166 226 286 345 404 464 523 583 

EBE-HLW 25 49 72 97 122 145 169 193 215 238 
EBE-SSOR 28 55 82 109 137 163 191 217 245 272 

49.0=ν            
DIAG 54 237 416 552 704 858 1018 1166 1316 1467 

EBE-HLW 59 127 194 260 326 392 459 524 590 654 
EBE-SSOR 67 138 209 282 356 427 500 572 645 717 

 

4 Preconditioning for elasto-plastic behaviour 
The limitations of linear elasticity for geotechnical problems are well-known. However, it is a linear 
elastic property, Poisson’s ratio, which has the most significant effect on the convergence 
characteristics of the iterative solver. Given that linear elasticity is a component of most elasto-
plastic models, the results given in the previous section must be significant for these problems too. 
Explicit FE approaches deal with the non-linearity inherent in elastic-plastic material models by 
solving incrementally a number of linear systems. As yielding occurs, the nature of these systems 
changes and account should be taken of that when applying preconditioning. 
It is well-known that associated flow rules lead to symmetric linear systems, while non-associated 
flow rules lead to unsymmetric systems. However, unless there is work-softening, both will lead to 
positive definite systems, as for linear elasticity. Ill-conditioning due to yielding does not appear to 
be as significant as the effect of Poisson’s ratio. The implication therefore is that, if one is using a 
high Poisson’s ratio, to model undrained material behaviour, it is the elements that remain elastic 
that will contribute most to the poor conditioning of the linear system one is solving at each 
incremental stage of the analysis. 
 

Table 3: Iteration counts for elasto-plastic footing problem using element based preconditioning 
 

 DIAG EBE-HLW EBE-SSOR 
Step 1 1095 453 503 
Step 7 1096 414 505 

Step 100 1555 589 705 
To illustrate the properties of linear systems arising from problems containing plasticity, we again 
look at he smooth footing problem, now including plastic behaviour. Using an unstructured mesh 
with n = 2178, and elastic-perfectly plastic soil and the von Mises criterion, the results shown in 



Table 3 are obtained. In this problem plasticity begins in step 7 of 100 and Poisson’s ratio is 0.49. 
These results suggest that the initial onset of plasticity makes little difference to the condition 
number of the linear system solved. Once the zone of plasticity is well-established (as at step 100), 
it has added to the ill-conditioning of the system. However, the effect is lesser than that associated 
with the Poisson’s ratio. Once again, the EBE method of Hughes et al. (1983) appears more 
competitive as measured on iteration counts. 
An additional elasto-plastic problem for which a closed form solution exists is the expansion of a 
thick-walled cylinder, which is described in many texts (e.g. Lubliner, 1990). Application of 
displacement controlled expansion of the inner radius of such a cylinder results in a uniform annular 
zone of yielding. Modelling one-quarter of this problem with a mesh with n = 1650 we obtain the 
iteration counts as shown in Table 4. The prescribed displacements are applied over 100 
increments, and plastic behaviour begins at step 49. In this problem the Poisson’s ratio is set to be 
zero. 

 
Table 4: Iteration counts for elasto-plastic plane strain cylinder problem using element based 

preconditioning 
 

 DIAG EBE-
HLW 

EBE-
SSOR 

Step 1 254 98 103 
Step 49 258 99 104 

Step 100 355 130 147 
 
Once again, the onset of plasticity is not significant. Ill-conditioning due to plasticity is only 
significant once large zones of plasticity have developed. Further tests have shown that applying 
different types of preconditioning to elements that are elastic and those containing yielding Gauss 
points does not improve matters. 

5 Conclusions and implications for geotechnical material models 
If we are to use iterative methods for the solution of FE equations arising from geotechnical 
problems we must understand the nature of the systems produced. The discussion presented 
above reviews the nature of systems arising from linear elasticity and makes the point that, 
whatever the complexity of the constitutive model adopted (and in geotechnics these can be highly 
complex) it is likely that the elastic parameters will dictate the level of ill-conditioning, and hence the 
required “power” of the preconditioner. We have shown that once zones of yield become 
appreciable proportions of a problem domain then ill-conditioning increases significantly. However, 
it should be remembered that these problems involve larger yielding zones than are likely to occur 
in real-life geotechnical problems where deformations are the required output. 
The results presented above do not involve complex material models, and aspects of plasticity such 
as hardening/softening are omitted. These topics are the subject of our current research and of 
recent papers by other researchers in this area (e.g. Chan et al. 2001; Mroueh & Shahrour, 1999). 
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