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Summary: A recent development of the scaled boundary method is outlined in this 
paper, where trial functions for the circumferential approximation are derived from a 
meshless method, rather than a conventional Galerkin finite element approach. The 
shape functions derived in this way lead to a smoother approximation on the defining 
curve so that a stress recovery procedure is not necessary and no elements are required. 
The new method is used to model the stresses around a square tunnel in a linear elastic 
soil with insitu prestress, and is shown to be both more economical (in terms of degrees 
of freedom) and more accurate than a conventional displacement FE approach. 

 
Introduction 
While the conventional finite element method is widely used in solid mechanics it 
remains deficient in some areas. Its inability to deal with infinite domains and stress 
singularities are important issues for which various techniques have been devised in the 
past, such as infinite elements and adaptivity. An alternative numerical method which 
deals with both of these issues is the scaled boundary finite-element method (SBFEM), 
originally developed by Wolf and Song [1]. The SBFEM works with bounded and 
unbounded domains and, unlike conventional finite elements, can provide analytical 
solutions at singularities (both stress and displacement).  

The SBFEM begins with the definition of a “scaling centre” in the problem domain 
as the origin of a coordinate system, comprising a normalised radial coordinate ξ and a 
circumferential coordinate s which specifies a distance around the boundary from an 
origin on the boundary. The “defining curve” is the boundary at ξ=1. An approximate 
solution for displacements in the domain {u (ξ, s)} is then sought in the form 

{u (ξ, s)} = ∑
i=1

n
 Ni

1(s) {ui(ξ)}  = [N1(s)] {u(ξ)}  (1) 

where [N1(s)] are the shape functions around the defining curve and the unknown 
displacement vector {u(ξ)} is a set of n functions analytical in the radial coordinate ξ.  
The same shape functions apply for all lines with a constant ξ. 

Strains, and then stresses, can be determined from the displacements given by 
equation 1 in the same fashion as the conventional FEM. Using a virtual displacement 
field [N2(s)] to interpolate between the nodes in the circumferential direction, a 
statement of equilibrium can be derived in terms of displacements {u(ξ)}, the shape 
functions [N1(s)] and the test functions [N2(s)], and applied boundary tractions. 

Further mathematical work, described in detail elsewhere (e.g. [2]), yields a 
quadratic eigenproblem in which the eigenvectors are modes of deformation, associated 
with nodes on the defining curve, and the eigenvalues are factors by which the modes 
are multiplied in the radial direction, to achieve the full displacement field. Stresses are 
recovered from this field in the usual manner.  
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A meshless scaled boundary method 
The accuracy of the stress field obtained in the SBFEM is influenced significantly by 
the differing accuracy of the displacement field obtained in the radial (analytical) and 
circumferential (approximate) directions.  In the original formulation of the SBFEM a 
Galerkin approach was taken, setting [N1(s)] = [N2(s)]. Here we demonstrate an 
alternative approach to derive the shape functions required along the defining curve 
using the meshless method of Atluri and Zhu [3]. The advantages are no elements are 
required (obviously) and the shape functions are considerably smoother than those 
derived using the piecewise finite element approach. 

Atluri and Zhu’s meshless method [3] is based on a moving least squares (MLS) 
approximation to fit a smooth curve to a set of randomly located nodal displacement 
values. In the scaled boundary method (SBM) this approximation is only required in one 
dimension (i.e. along the s-coordinate direction).  Considering displacement in the x-
direction, u(s) the MLS approximation is given by 

 
u(s) = {p(s)}T {a(s)} (2) 

where {p(s)} is a complete monomial basis in terms of s (either linear or quadratic) and 
{a(s)} is a vector of coefficients which is determined from the fictitious values of the 
nodal displacements ûxi at nodes ni ..1=  by a least squares procedure by minimising the 
norm 

J(s) = ∑
i=1

n
 wi (s) [{p(s)}T{a(s)} − ûxi]2  (3) 

In equation 3, wi (s) are weighting functions with a value of unity at node i and reducing 
values at adjacent nodes. Only the nodes for which wi (s) >0 contribute to the MLS 
approximation implying that a minimum number of nodes are required to provide 
enough points for the level of the monomial {p(s)}. A linear relationship between {a(s)} 
and {ûx} can be derived by minimising the norm in equation 3. Further manipulation, 
which is covered in detail elsewhere [4] then leads to shape functions {ϕ(s)} that 
operate on actual nodal values {ux}, i.e. 
 

u(s) = {ϕ(s)}T {ux}  (4) 

Various options are possible for the weight functions  in equation 3 and here a spline 
weight function is used that has unit value at si, falling to zero a distance ri from this 
position as described by 
 

wi(s) =
⎩
⎨
⎧ 1 − 6(|s−si|/ri)2 + 8(|s−si|/ri)3 − 3(|s−si|/ri)4 0 ≤ |s−si| ≤ ri

 0  |s−si| ≥ ri
  (5) 

In the meshless method ri is therefore the zone in which nodal values will be included in 
the weighted norm and the choice of ri consequently affects the smoothness of the 
solution. 

The above deals with the shape functions required for the scaled boundary method. 
Also required are test functions to describe the virtual displacement field (not to be 
confused with the weighting functions wi(s) described above). There are considerable 
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advantages here in using test functions that differ from the shape functions (i.e. a 
Petrov-Galerkin approach) since the domains in which the latter would require 
integration using a Galerkin approach would introduce unnecessary complexities. The 
spline functions given in equation 5 with a reduced zone of influence (i.e. smaller ri than 
the weighting functions) have been found to be sufficient. 
 
An example  
The stresses around a square tunnel in a prestressed linear elastic medium will be 
analysed using the SBM with shape functions derived from the meshless method. This 
problem contains an infinite domain, two bounded subdomains and points of stress 
singularity (at the corners of the tunnel). It is therefore a good problem to demonstrate 
the capabilities of the new SBM. No analytical solution for this problem exists (to the 
authors’ knowledge) so the example is presented only as a means of comparison with 
results from a conventional finite element analysis. The latter are obtained from the 
Plaxis software (a commercial package routinely used for the analysis of soil and rock 
problems [5]). 

The problem layout is shown in Fig. 1a. A square tunnel of dimension 2 units is 
located with cover of 1 unit below the surface of an elastic half-space. The problem is 
assumed to be plane strain and, due to symmetry, only one half of the problem is 
modelled, as shown in Fig. 1b. A symmetric boundary condition (i.e. zero x-translation) 
is applied along the left-hand vertical boundary. For the conventional FE analysis the 
mesh must be of finite dimensions and in this analysis it is terminated at 20 units from 
the tunnel centreline in each direction. Prior to appearance of the tunnel the elastic half-
space is prestressed with vertical stresses corresponding to soil self-weight, i.e. 
increasing linearly from zero at the surface. A coincident horizontal stress is also 
applied to model a coefficient of soil pressure at rest 10 =K . Excavation of the tunnel is 
modelled by applying tractions to the tunnel boundary to remove the normal stresses 
equilibrating the initial stress field. Figure 2 shows contours of the final vertical normal 
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Figure 1: (a) Square tunnel problem layout. (b) SBM model 
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stress field computed using the meshless scaled boundary method and the conventional 
FE method. They are virtually indistinguishable. (While not included here, plots of 
horizontal normal stress and shear stress are also identical).  The number of degrees of 
freedom in the SBM mesh is 178 while in the conventional FE model over 11000 
degrees of freedom are used. While not conclusive evidence of the economy of the new 
SBM, it is indicative of results obtained but reported elsewhere for this and the original 
SBFEM for a variety of problems in elastostatics. Detailed comparison between the new 
meshless method and conventional SBFEM modelling is given elsewhere [4].  
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Figure 2: Contours of vertical normal stresses around a square tunnel  

(a) SBM . (b) Conventional FEM 

Conclusion 
The scaled boundary finite element method has been adapted to use shape functions 
based on the meshless method of Atluri and Zhu [3]. The new scaled boundary method 
maintains the advantages of the SBFEM, i.e. the ability to model unbounded domains 
and accuracy at stress singularities with greater economy than the conventional FEM. In 
addition, the use of meshless method based shape functions delivers greater smoothness 
to the displacement approximations and hence improved stress fields. The approach 
also, of course, removes the need for any mesh to be generated along the defining curve. 

 
References 
1. Wolf JP. and Song Ch. (1996) Finite-Element Modelling of Unbounded Media. John Wiley and 

Sons: Chichester. 
2. Deeks, A.J. and Wolf, J.P. (2002), ‘A virtual work derivation of the scaled boundary finite-element 

method for elastostatics’, Computational Mechanics, 28(6):489-504. 
3. Atluri, S.N. and Zhu, T. (1998), ‘A new Meshless Local Petrov-Galerkin (MLPG) approach in 

computational mechanics’, Computational Mechanics, 22:117-127. 
4. Deeks, A.J. and Augarde, C.E. (2004) ‘A Meshless Local Petrov-Galerkin Scaled Boundary 

Method’, submitted to Computational Mechanics.  
5. Plaxis software, Plaxis BV, Holland. 

 4


