
13
th acme conference: university of sheffield march 21-22 2005

Object Oriented Design of Parallel and Sequential
Finite Element Codes
Boyan Lazarov† & Charles Augarde‡

School of Engineering

University of Durham
†boyan.lazarov@durham.ac.uk ‡charles.augarde@durham.ac.uk

1. Introduction

The Finite Element (FE) Method is a widely accepted general purpose numerical modelling
tool. Typical FE programs consist of several hundred thousand lines of procedural code and
many complex data structures. Alternative approaches, based on object oriented programming
(OOP) concepts, are becoming popular as evidenced by the exhaustive bibliography of the
use of OOP techniques in FEM [3]. OOP is based on the idea of “objects” that encapsulate
both the data and the operations on the data. The implementation details are hidden and
every object defines itself clear interfaces for communication. This makes code very simple to
maintain and modify, and hence attractive for use on research FE codes.
In this paper we describe aspects of the design and implementation of an OOP based FE
code primarily for use in large geomechanics simulations. The code allows various types of FE
analysis, in both sequential and parallel computing environments, as well as the modelling of
multi-field physical phenomena. A novel feature of this work is that, instead of using direct
generalisation of the data structures used in a procedural code (i.e. representing a domain as
an object and performing the calculations on the domain) each of the finite elements in this
code is defined as a separate object. In addition, material constitutive behaviour and geometric
primitives are also represented as objects. This gives great flexibility for adding new elements,
materials or modelling new physical phenomena. Combination of different element types, for
instance mixing structural (i.e. bending) elements with continuum elements, is also made
simpler. Since the mathematical operations performed by an element are very similar to the
operations performed by constraints or external loads, no distinction is made between them.
Extending this idea further, every operation on elements, for example removing or adding
elements to the model, is also represented as an element object.
The performance of a sequential FE code depends on the performance of the individual pro-
cessor, the latency for access to data in the local memory and its bandwidth. In a parallel
implementation performance additionally depends on the message activity, the load balancing
and the bandwidth of message passing interface between the separate processes. The modular
structure in the object oriented (OO) code clarifies the communication patterns and makes
data decomposition and load balancing easier. This significantly improves scalability of the
code.

2. Object oriented programming - some basic principles

Detailed descriptions of the main concepts of OO programming, namely encapsulation, inher-
itance and polymorphism, can be found in many books [6]. Here we merely provide reminders.
A traditional (non-OO) program can be viewed as a logical procedure that takes input data,
processes it and returns the output. The main program is built around simpler procedures or
functions. In designing a procedural code, one focuses on how to define the logic rather than
defining the data and its organisation. In contrast, an OO program is built around modules
(objects) which encapsulate both the data and the operations (methods) on the data. An
object can be viewed as an abstraction which relates variables and methods.

1



FEM MODEL

TIME
INTEGRATION

NR
SOLUTION

LINEAR
SOLUTION

N
O

D
A

L
C

O
N

T
A

IN
E

R

E
L
E

M
E

N
T

C
O

N
T
A

IN
E

R

M
A
T

E
R

IA
L

C
O

N
T
A

IN
E

R

P
A

R
A

M
E

T
E

R
S

Figure 1. FEM data model

The first step in building an OO program therefore is to identify the objects and how they
relate to each other. Once the objects are identified they can be generalised to a class of ob-
jects. The class is the actual definition of the data and the methods, and an object should be
viewed as a particular instance of the class. The class definition can be reused in defining new
classes. This property is known as inheritance. A new class can inherit data structures and
methods from those previously defined and can add additional data structures and methods.
In addition, the basic class can define access rules to its data. This characteristic (known as
data hiding) provides greater system security and avoids unintended data corruption. An-
other very powerful property of the OO method is polymorphism, where an operation may
exhibit different behaviour for different types of data. The behaviour depends not only on the
operation but also on the data type or object used.

3. The non-linear FE method

The code described here is primarily a material non-linear FE [1, 2] program for solid me-
chanics, and uses the Newton-Raphson method to solve the equations arising from a discreti-
sation of a weak form of the equations of equilibrium, compatibility and material constitutive
behaviour. The field variable is displacement at nodal degrees-of-freedom (DOFs). The incre-
mental displacement vector u at the end of a load step, is obtained by summing displacements
at successive sub-steps ∆ui from

Ki−1∆ui = ri−1 (1)

where Ki−1 and ri−1 are the tangential stiffness and the residual (out-of-balance) force vector
at step i − 1 respectively. The residual at each substep is found from an equilibrium check
against current stresses arising from the current state of deformation. The basic operations
repeated at element level are therefore determination of the elemental stiffness and residual
contributions.

4. Data model and object identification

The main steps performed in FE analysis are geometric modelling, domain discretisation, so-
lution and post-processing. Many FE codes try to accomplish all these tasks in one program.
Such an approach increases significantly the complexity of the code and reduces ease of main-
tenance and extension. The code developed here is for research and so we have concentrated
on the solution phase only. The program kernel performs the following tasks: reading the dis-
cretised model and the solution parameters, solution and saving of results. The data model
used in the program is shown in Fig(1). The FE data model can be represented as a set of
nested object databases (DBs) for (1) the objects connected with the geometry description,
(2) the elements, (3) the material models (or parameters for the PDE) and (4) the parameters
needed for solution. Each DB is implemented as an object with common operations, namely
get object, add object and delete object.

2



4.1. Nodes. The node object can take two forms in this code. The first is an object containing
information on the degrees-of-freedom (DOFs) at that node. In this case, each node object
carries a table which relates the DOFs to their global numbers. A node object of this nature
might not include any information about its position. We do not restrict the numbers of DOFs
at nodes to be the same throughout the domain, a restriction which prevents mixing of element
types in other codes. The DOFs are assigned to the node by the elements which are connected
to this node. The DOFs table consists of unique DOFs, i.e. the container cannot contain two
displacements in X direction or two rotations around Y axis. Once the DOFs are set by the
elements, the FE data model will assign a global number to each DOF by cycling through all
nodes. Other node objects are possible (called fake nodes) which are used to implement the
constraints, such as prescribed boundary conditions. The Nodal DB (see Fig(1)) contains all
nodes of all types.

4.2. Elements and operations on elements. We have indicated, above, that the element
object contains information about the topology of the element. In addition material infor-
mation (including history variables, such as hardening parameters) is kept internally. The
common operations performed by every element are the formation of the element stiffness
matrix and contribution to the residual vector and the storage of these contributions in their
global counterparts. The notion of an element object is further generalized in the code to in-
clude every operation on an element or set of elements. For example, consider the modelling of
tunnelling in geomechanics. To simulate the tunnelling process, excavation must be modelled.
Implementation by removing elements on a global level will limit the program extensibility.
The easiest way, therefore, to incorporate such a feature is to implement the excavation process
as an “element” which will remove elements from the element DB.

4.3. System input or external loads. Considering small displacement analysis for simplic-
ity, external loads will contribute to the residual vector only. However, to allow extension to
finite strain, loads are considered here as another type of element object. This avoids adding
an additional DB, specifically for loads. The drawback is that a small computational overhead
is added in the case when the load does not contribute to the tangent matrix (i.e. the small
displacement case).

4.4. Constraints. In most FE codes, constraints (e.g. prescribed displacements) are either
applied by removing the constrained DOF from the node or by modifying the global tangent
matrix. Both approaches are unsuitable for this code as they are global operations requiring
communication between all processes. The only way to add constraints without changing the
data organisation, and the relations between objects, is by applying the constraints either using
the Penalty method or using Lagrange multipliers [1, 4]. The advantage of using Lagrange
multipliers is that the applied boundary conditions or constraints are exactly satisfied. The
drawback is that each constraint increases the length of the vector of unknowns by one.
Therefore, for each constraint equation an additional “fake” node is added. If the Lagrange
multiplier method is applied on a subdomain then the DOF representing the multiplier field
will be associated with a geometric node.

4.5. Materials. Objects representing materials are the most difficult to unify, because they
are directly dependent on the underlying physical problem. In [5] element-to-material commu-
nication is achieved by introducing another abstraction, the material point. Such an approach
adds, in some cases, additional data which it is not necessary to store in the element. For ex-
ample, elasticity parameters where the domain is uniformly linear elastic. The material point
concept solves the problem with the internal history variables, for example the plastic strain
in plasticity, but does not solve the problem of unifying the output from the material model.
Let us consider a solid mechanics problem including heat transfer. The mechanical element
will integrate the residual over the stress, however the heat transfer element will integrate the
residual over the temperature. The output from the material object given material point as

3



an input in the first case will be stress in the second case will be temperature. Therefore it is
necessary to use these element objects with some care.

5. Solution algorithms. Vectors and matrices

The solution algorithms are designed as procedures (objects) which plug into the FE model.
The solution procedure works with global vectors and matrices rather than elements and
nodes. The connection between the algorithms and the FE model are the global vectors and
matrices. They are implemented as global objects with various methods for manipulation
and updating. Using this abstraction makes the underlying storage independent from the
application. For large matrices, sparse storage is used and objects are the perfect tool for
hiding the internal organization.

6. Parallel implementation

The main challenge in the parallelisation of a numerical algorithm is load balancing and syn-
cronization between the different processes. The clear modular structure of the proposed data
model makes data decomposition and the implementation of communications very easy. The
data organization Fig(1) is the same on each process. The communications are organized on
the element, the node and the material DB levels. Nodes and element objects are not allowed
to communicate directly between processes. If an object requires an object from another pro-
cess, the request and the data synchronization is done by the DB responsible for managing
this object. For example, if an element requires a node, the request has to be send to the
nodal DB. The majority of communications are for synchronizing the nodes between the dif-
ferent processes. Every operation over a set of elements (e.g. removal to model excavation) is
considered to be performed by an element object. Such operations are global objects and they
require communication, but for the rest of the element objects “inside” processes, no commu-
nication or synchronization is necessary. The current solution vector is kept in a distributed
form between the processes, however communication between these objects is organized in a
separate mathematical library for vectors and matrices. Load balancing will be added in the
future as an element object.

7. Remarks

The described data structures and algorithms have been successfully implemented. The C++
language has been chosen due its implementation efficiency and portability. The described
data organization leads to modular implementation and easy extendibility of the code. The
program provides robust computational tool for modelling complex processes such a tunnelling
in geomechanics and has good possibilities for many other interesting physical problems.

8. Acknowledgements

This research is funded by the UK EPSRC under grant no GR/S42712/01.

References

[1] Bathe, K.J.,Finite Element Procedures, Prentice Hall, 1996

[2] Belytschko,T., Liu,W.K. and Moran, B.,Nonlinear Finite Elements for Continua and

Structures, Wiley, 2000

[3] Mackerle,J., Object-oriented programming in FEM and BEM a bibliography (1990-2003),
Advances in Engineering Software, 35, 2004, 325-336

[4] Dubois-Pelerin, Y. and Pegon, P., Linear constraints in object-oriented finite element
programming, Comput. Methods Appl. Mech. Eng, 154 , 1998, 31-39

[5] Patzak, B., Bittnar, Z., Design of object oriented finite element code, Advances in Engi-

neering Software, 32 , 2001, 759-767
[6] Stroustrup, B., The C++ Programming Language,Addison-Wesley, 1997

4


