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ABSTRACT

Meshless methods are of increasing interest in solid mechanics as they offer a discretisation approach
that does not require mesh generation, a major overhead for 3D problems. Some difficulties however
remain to be ironed out for meshless methods before they can begin to compete with finite element
methods in commercial codes. This paper investigates the use of adaptive procedures and the effect that
the arrangement of nodes has on the accuracy of solutions, and indeed if solutions can be obtained at
all. As with finite element methods accuracy can be improved through h- and p-adaptivity however the
requirement for sufficient support to each point in the domain adds additional complexity.

1 Introduction
The conflict between computational efficiency and accuracy of results is an important issue in compu-
tational mechanics. To achieve a balance, adaptive analysis techniques have been developed including
p-adaptivity and h-adaptivity. The former increases the orders of the basis functions and the latter re-
fines the interpolation domain, for example, reducing element size. They may be combined to give
hp-adaptivity. In the finite element method (FEM), hp-adaptivity can be realized by inserting nodes
between pairs of nodes linked by an edge to form a higher order element or by remeshing locally. Con-
sequently, extra computational resources are needed to rearrange and record the new element topology,
and a significant problem is the accumulation of errors caused by the mapping of previous results to
new nodes. In meshless methods, accuracy can be improved by choosing higher order polynomials or
by adding nodes without changing the existing nodal arrangement. This is possible since the shape
functions depend only on nodal information. This appears to make efficient and accurate hp-adaptivity
analysis possible. However, we have found it not to be as easy as it looks and problems arise in even
simple cases.



2 MLS approximations

For completeness, a brief review of the generation of shape functions using a MLS approach is now
presented [1]. Meshless methods such as the element free Galerkin (EFG) method and meshless local
Petrov-Galerkin (MLPG) method use a MLS approximation for the field variable, e.g. displacement in
solid mechanics, to derive shape functions φI for each node I supporting the approximation at a given
point x. Now consider a set of n data pairs U = {uI , xI} , I = 1, 2, · · ·n to interpolate an unknown
field value u(x), the MLS approximation can be constructed as

uh(x) =
n∑
I

φI(x)uI = Φ(x)u (1)

where uh(x) denotes the approximate value of u(x), n is the number of nodes in support at x and φI(x)
is the shape function of node I at x. Φ(x) is a 1× n matrix collecting together the shape functions φI

and u is a vector containing the fictitious nodal values. The contribution of each node φI is solved in
a least square manner which minimizes the summation of residuals between each pair of uh(xI) and
uI . The residuals are weighted and will change as point x moves. u(x) is normally approximated as a
polynomial then

uh(x) =
m∑
j
pj(x)aj(x) = pT (x)a(x) (2)

where m = is the number of monomials in the basis matrix p(x), e.g. m = 3 for a linear basis in 2D or
a quadratic basis in 1D, and a(x) is a vector of coefficients. pT (x) = [p1(x), . . . , pm(x)] is built using
Pascal’s triangle in 2D and Pascal’s pyramid in 3D. The coefficients a(x) can be found by inverting
A(x)

a(x) = A(x)−1B(x)u,

where the elements of matrix A(x)m×m are given by

A = PWPT (3)

and B = PW, where P is an m× n matrix defined by

P =
[
p(x1), . . . ,p(xn)

]
(4)

and W is an n× n diagonal matrix

W = [ diag(w1(x), . . . , wn(x)) ]n×n . (5)

It can be seen that the inversion of A requires n > m, i.e. the number of nodes in support to be greater
than the number of terms in the polynomial (its order plus one). The selection of supporting nodes is
based on a concept of an influence domain for each node which determines how much the residual from
a node will be weighted. The influence domain (in 2D for example) can be circular or rectangular with
the node at the centre. All quadrature points, needed to calculate terms in the stiffness matrix, falling
within the influence domain of a node will then be supported by that node. In this study, a circular
domain is used and the radius RmI of the influence domain is given by

RmI = Rf dc (6)

where Rf is a dimensionless scaling factor normally between 1.0 and 2.0 termed the influence radius
factor and dc is the characteristic value of node spacing, i.e. maximum edge size of integration cell.
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Figure 1: The model for the Timoshenko’s cantilever beam
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Figure 2: The models used for the Timoshenko’s cantilever beam problem

3 An example to show difficulties with meshless adaptivity
We will look at the Timoshenko’s cantilever beam problem [2] which is widely used to validate adap-
tivity analysis, although there are many cases of misuse as reported by [3]. The essential boundary
conditions are more complex than usually assumed and are actually as shown in Figure 1). The analyt-
ical displacement field {ux, uy} is cubic and is given as follows:

ux =
Py

6EI

[
(6L− 3x)x+ (2 + ν) y2 − 3D2

2
(1 + ν)

]
(7)

uy = − P

6EI
[
3νy2 (L− x) + (3L− x)x2

]
. (8)

The stress field {σx, σy, σxy} is given by

σxx =
P (L− x) y

l
, (9a)

σyy = 0 (9b)

σxy = − P
2I

(
D2

4
− y2

)
, (9c)

Two meshless models, named A and B, were used to study p and h adaptivity analysis respectively. The
energy error norm ‖e‖ is defined as

‖e‖ =
(∫

Ω
(ε− εexact)T · (σ − σexact)dΩ

) 1
2

. (10)

Case A: The first test was performed using a meshless model of 137 irregularly distributed nodes as
shown in Figure 2(a). The results are given in Table 1. Note, n̄ is the average number of nodes in support
at each quadrature point. Firstly, a linear basis is used with Rf = 1.0 and ‖e‖ about 5% (A1). Then
a quadratic basis is used to improve the solution (A2). However, the quadratic basis requires at least
6 nodes in support at each quadrature point. Therefore Rf needs to be increased to 1.5 to ensure this.
The calculation then fails because A(x) is singular at many quadrature points despite n̄ being between
8 and 9. A close examination of the nodal support shows quadrature points close to or on boundaries
to have insufficient nodes in support. A common way to solve this problem is to increase Rf to 1.7 in
the third calculation (A3) which ensures n̄ ≥ 6 for all quadrature points. However, the accuracy then
deteriorates (see an increase in ‖e‖) even compared with the linear basis. This sequence of analyses
shows that simply varying the basis used, to achieve p-adaptivity can have unpredictable results.



Analysis Rf n̄ Domain basis Boundary basis ‖e‖
A1 1.0 4.4 linear linear 0.0474
A2 1.5 8.6 quadratic quadratic -
A3 1.7 10.9 quadratic quadratic 0.0330
A4 1.5 8.6 quadratic,linear quadratic,linear 0.0149

Table 1: Relative errors of deflection ratios by present EFG and DEM

Case B: The second test used a meshless model of 77 regularly distributed nodes, as shown in Figure
2(b). This kind of node distribution makes h adaptivity straightforward as automatic node injection can
be easily implemented while preserving a regular distribution. However, the tests showed that A(x)
became ill-conditioned for large numbers of quadrature points and no solution was possible.

4 Potential solutions

The problems met in the Case A calculations are a result of a conflict between the loss of accuracy by
increasing Rf and the use of high order polynomials. This problem can be overcome by using mixed
bases in different parts of the domain. the results from a final calculation (A4) are shown in in Table
1 using this procedure and shows an improved accuracy without further increasing Rf . The problem
arising in Case B is related to the distribution pattern of supporting nodes. From Equation (3), we have

rank(A) ≤ min(rank(P), rank(W)), (11)

and rank(W) ≡ n from Equation (5). Then

rank(A) = rank(P). (12)

A becomes singular or ill-conditioned when the topology of supporting nodes fails or nearly fails
to span quadratic basis in 2D. Some interesting geometries of local nodal distributions are shown in
Figure 3 marked with good or bad indicating good or ill-conditioned A by setting the limit as . Figure
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Figure 3: Node distribution where A is of good or bad condition number

3(a) is a bad case as there are less than three nodes lying on different x coordinates, and for (c) all the
nodes are symmetric with respect to the bisector line of xy coordinates and the line perpendicular to
the bisector line such that the monomial xy can not be spanned. An easy way to understand this case
is that the shape can be folded twice to make each node overlapp a symmetric partner. In Figure 3 (b),
node 1 breaks the bisector rule. The solution is to perturb node coordinates when inverting A.
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