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ABSTRACT

There is a pressing need to improve the feasibility of three-dimensional finite element (FE) methods ap-
plied to many problems in civil engineering. This is particularly the case for static analyses in geotech-
nical engineering: ideally, models would be 3D, follow the actual geometry, use non-linear material
formulations and allow simulation of construction sequences, and all of this with a reasonable degree
of accuracy. One major obstacle to improvements in this regard is the difficulty in solving of the set of
(linearised) algebraic equations which arises from a typical discretisation approach. Very large systems
become cumbersome for direct techniques to solve economically. This paper describes the incorpora-
tion of iterative (rather than direct) solution techniques, developed through University research, into
commercial FE software for geotechnics.

1 Background

Finite element modelling is widely used in civil engineering and particularly in geotechnics where typ-
ical problems include the prediction of movements due to construction operations such as tunnelling
and retaining wall erection. Accurate predictions require highly refined models in 3D and the use of
(often) complex nonlinear elasto-plastic material models for soils, which take account of the stress his-
tories of all points in the soil domain. These requirements lead to large FE models (i.e. many degrees
of freedom) and many load steps, due to the nonlinearity. Highly efficient storage schemes and opti-
mized direct solvers (e.g. [1]) have improved the feasibility of solving very large systems, however,
the memory requirements of direct solvers will eventually place a limit on what is possible using the
computing resources typically available to industry, e.g. a desktop workstation and a maximum runtime
of 12 hours. Potentially, iterative solvers provide a solution to this problem since they require a fraction
of the storage of a direct solver for a large system, however convergence then becomes the major issue.

Nonlinear FE analysis leads to the solution of a series of linear systems each

Ku = f (1)

involving the structure stiffness matrix K and load vector f which must be solved for the nodal dis-
placements u. These equations are usually solved with well-established incremental or iterative solution
techniques (such as the modified Euler or Newton-Raphson methods). The choice of iterative method
depends partly on the nature of the linear system. For symmetric systems the conjugate gradient (CG)



method can be used while for unsymmetric systems the Generalized Minimal Residual (GMRES) or Bi-
conjugate Gradient Stabilized (BiCGSTAB) methods can be used [2]. For all of these Krylov methods,
convergence depends crucially on the eigenvalue spectrum of the coefficient matrix in the linear sys-
tem. Convergence can be improved by preconditioning: theoretically, this is equivalent to replacing K
by a preconditioned matrix P−1K whose eigenvalue spectrum facilitates faster iterative convergence.
Considerable research has been carried out in recent years to find inexpensive ways to generate suitable
preconditioners P for a variety of problems with different types of K.

Recent collaboration between Augarde and Ramage has led to the development of preconditioned it-
erative approaches for systems arising from FE models incorporating geotechnical materials [3]. In
particular, a new element-based version of a class of matrix reduction techniques was developed which
proved to be extremely effective for unstructured elasto-plastic footing problems when tested on a se-
quence of model problems [4]. The approach takes each element stiffness matrix Ke and applies two
reductions as follows (using the terminology of [5]). Firstly a D-reduction of Ke is obtained by ne-
glecting any connections between degrees of freedom of different types (i.e. links between x and y
degrees of freedom in 2D) with the resulting matrix known as the separate displacement component of
Ke. Secondly a C-reduction of Ke is carried out by lumping any positive off-diagonal entries in a row
of Ke onto the diagonal. The resulting matrix is factorised using the approach described in [6] and a
preconditioning matrix produced. Full details of this preconditioner (named DC-EMF) are given in [4].

This paper describes the incorporation and initial testing of iterative solvers (including DC-EMF) into
commercial software through collaboration between academics in mathematics and engineering and
a commercial software house (OASYS Limited (http://www.oasys-software.com); OASYS
is part of Ove Arup & Partners Ltd (http://www.arup.com)). The project is funded through the
Collaborative Training Account of Strathclyde University. The collaboration provides both a strong
“testbed” for these solvers on problems not usually available to academics, and access to state of the art
research by industry very soon after initial development in academia.

2 Results

The aim of this section is to compare the performance of the recently developed element-based pre-
conditioning procedure in [4] against other iterative solution methods and the existing direct solver
in the FE software SAFE. Due to space limitations, full details of the solvers and preconditioners are
not included here. All calculations used versions of SAFE with different routines called for different
solvers. A number of example linear elastic geotechnical test problems were analysed varying the ma-
terial properties (i.e. ν, Poisson’s ratio), mesh refinement and type of solver. The role of Poisson’s ratio
in the convergence of iterative solvers has been shown to be of major significance even compared to
onset of yielding in elasto-plastic analyses [4]. The solution techniques used were as follows:

1. Element based CG solver with no preconditioner. Element-based methods do not require the
storage of any assembled matrices. One of the main attractions of these methods is that they
allow relatively straightforward parallel implementation of iterative solvers.

2. Element-based, with diagonal preconditioner. P = diag(K) =
∑E

e=1 CT
e diag(Ke)Ce where

Ce is the Boolean matrix linking entries in the element stiffness matrix Ke with the global stiff-
ness matrix, and E is the number of elements.

3. Element based with “element-by-element” preconditioner following [7]. P =
D1/2

[∏E
e=1 Le

] [∏E
e=1 De

] [∏1
e=E LT

e

]
D1/2 where Le and De are lower triangular

and diagonal matrices found from a factorization of a regularized version of Ke.

4. Assembled with SSOR preconditioning.

5. Assembled with Incomplete Cholesky preconditioning.

6. Assembled with Incomplete Cholesky preconditioning including thresholding and dropping.



7. Oasys SAFE’s existing direct solver.

8. Element-based with DC-EMF preconditioning following [4].

The simple rigid footing problem is studied (geometry as shown in Fig. 1) where only one-half of the
domain (shown shaded) is modelled due to symmetry. Firstly, structured meshes of N × N 8-noded
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Figure 1: Geometry of the footing problem

quadrilateral elements with uniform material properties were used. Figure 2 shows computation times
and iteration counts for a mesh with N = 64, (i.e. 4096 elements; 12545 nodes). (Iteration counts are
not included for solver 7 as this is the direct solver). With lower mesh densities the direct solver wins
as expected confirming that direct solvers are the preferred choice for 2D analyses.

The iteration count (and hence computation time) increase as Poisson’s ratio increases as the linear
system to be solved becomes less positive definite; the off-diagonal terms become larger relative to the
diagonal terms. Figure 2 shows that the DC-EMF solver is a competitive iterative solver as compared to
the other iteartive solvers tested. Figure 3(a) compares the direct solver with the DC-EMF solver for this
problem for two values of Poisson’s ratio in which rt is the ratio of computation time for the DC-EMF
solver against the direct solver. Figure 3(a) indicates that as problem size increases the DC-EMF solver
starts to beat the direct solver for this problem.
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Figure 2: Results for the uniform material problem, N = 64

When the mesh is unstructured (containing 6435 elements and 19652 nodes), for the same problem
(maintaining uniform material properties) the results are excellent for DC-EMF with ν = 0, 0.25, 0.4
but less promising for ν = 0.49. Figure 3(b) shows that for ν = 0.49 the DC-EMF solver suddenly
performs much worse than other iterative solvers and the direct solver.
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(a) Comparison of DC-EMF solver and direct solver for
varying problem size
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Figure 3:

3 Discussion

The initial results presented above appear to show that iterative solution methods can begin to challenge
direct solvers for large FE problems although care must be taken in their use as minor changes to the
model can affect convergence. The maximum size of problem studied here is, however, relatively small
compared to a reasonable mesh in 3D, therefore these conclusions may be even more significant for
3D, where direct solvers will definitely struggle, and makes the development of robust iterative solvers
more of a priority. It is rare for academics to have the opportunity to implement their ideas rapidly into
commercial software and all parties hope this collaboration can continue to the benefit of all.
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