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Abstract: The finite element (FE) simulation of large scale boundary value problems in unsaturated soils is 
particularly time-consuming owing to the complex properties of the unsaturated porous media. To speed up 
analyses, a parallel FE code has been developed in this work by using C++ and MPI running on a Linux 
parallel computer cluster. The “Divide and Conquer” strategy has been used to partition the task among the 
processors with minimum data exchanges and load balancing. The linear system of equations was solved 
using the iterative solver BiCGSTAB incorporated within an element-by-element method. One serial and one 
parallel calculation are presented to validate the code and to test the parallel performance the algorithm. 
 
 
1. INTRODUCTION 

Understanding the behaviour of unsaturated 
soils is important for many geotechnical 
applications in natural soil deposits (where the 
water table is at some depth below ground surface) 
as well as in compacted soils used as fill material. 
The accurate analysis of unsaturated soils by the 
finite element methods requires consideration of 
the physical coupling among three phases, i.e. the 
gas, liquid and solid phases. However, the highly 
nonlinear nature of the governing differential 
equations and the presence of air pressure as an 
additional nodal unknown, make computations 
expensive. Besides, most geotechnical problems 
cannot be accurately studied in two dimensions and 
they need instead three-dimensional models. Such 
features increase the amount of computation 
beyond the capabilities of any single personal 
computer. Alternative approaches are therefore 
required such as parallel computing by using a 
cluster of computers working simultaneously.  

The choice of a parallel strategy is crucial in 
order to achieve high performance in terms of 
efficiency and extensibility. A parallel frontal 
technique was used (Thomas et al. 1998) to reduce 
computational time in multi-physics problems. 
However, direct methods lead to fill-in, which 
makes expensive to solve and difficult to 
parallelize large sparse linear systems and they are 
therefore being progressively replaced by iterative 
methods. Among iterative solvers, the element-by-
element (EBE) method is one of the most attractive 
due to its economy in storage and the ease to 
implement. The EBE was introduced by Hughes et 
al (1983) and Ortiz et al (1983). This paper 
describes a parallel finite element code for coupled 
multi-physics problems in unsaturated soils 
developed by using Domain Decomposition 
Methods (DDM) and an EBE iterative solver. 

2. UNSTURATED SOILS SIMULATIONS 
2.1 Governing eqations for unsaturated 
soils 

Unsaturated soil is a three-phase porous 
medium consisting of solid grains, pore liquid and 
pore gas. In this work it is assumed that the gas 
phase only contains air whereas the liquid phase 
contains liquid water and dissolved. The coupled 
study of water flow, air flow and mechanical 
equilibrium requires the statement of governing 
differential equations as well as constitutive 
relationships between physical variables and 
primary unknowns. The mass balance of water 
flow leads to the following equation: 
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The mass balance of air flow within the gas phase 
as well as in the liquid phase (i.e. in the form of 
dissolved air) leads to the following equation: 
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The mechanical equilibrium leads to the following 
equation expressed in terms of net stress 

aijijij uδσσ −=*  and pore gas pressure au : 
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In the above equations, n  is porosity, rS  is the 
liquid degree of saturation, wρ  and aρ  are the 

water and air density respectively, wv  and av  are 
the liquid and gas flux vectors respectively, H  is 
Henry’s constant of solubility of dry air in water, 
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ijσ  is the total stress, ijδ  is the Kronecker delta 

and ib  is the body force. 
The above governing equations can be re-

formulated in terms of the primary unknowns of 
displacement, pore gas pressure and pore liquid 
pressure by using a set of constitutive equations 
introduced in the following section. Besides, initial 
conditions of displacement, pore gas pressure and 
pore liquid pressure need to be specified at time 
t=0 over the full soil domain. The boundary 
conditions can be specified either as imposed 
values on nodes or as fluxes on the boundary. 
 
2.2 Constitutive equations 

It is assumed that the air behaves as an ideal gas 
obeying the following law: 
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where T  is the absolute temperature, R  is the gas 
constant, M  is the molecular weight of air and 

atmp is the atmospheric pressure (note that pore gas 
pressure, pore liquid pressure and stresses are all 
relative to the atmosphere in this formulation). 

The liquid and gas fluxes, vw and  va are given 
by the generalized multiphase Darcy’s law as: 
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where k  is the intrinsic permeability tensor, wγ  
and aγ  are the specific weights, rwk  and rak  are 
the relative permeabilities and aµ  and wµ are the 
viscosities (the subscripts a  and w  refer to the 
gaseous and liquid phases respectively). The values 
of relative permeabilities range from 0 to 1, and are 
assumed to be nonlinear functions of the degree of 
saturation. 

The degree of saturation is a unique function of 
net stress ij

*σ  and suction wa uus −=  through a 
water retention relationship such as: 

( )sfS ijr ,*σ=                                                    (7) 
The following elastic relationship is adopted 
between the “average soil skeleton stress”, whose 

definition is )( sSu raijijij −−= δσσ , and the strain 

klε : 
 

klijklij εσ dd D=                                                    (8) 
 
where ijklD is the elastic stiffness tensor. 
The above equation can also be rewritten in terms 
of net stress and suction as: 
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where: 
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A linear elastic relationship is assumed between 

average soil skeleton stress and strain so the 
stiffness tensor D  is independent of stress state. 

 
2.3 Time and spatial discretisation 

Spatial discretization by the Galerkin finite 
element method of Eqs. 1, 2 and 3 and the relevant 
constitutive relationships yield the algebraic system 
given in Eq. 11, whose matrix and vector 
coefficients are discussed in detail in (Gens et al. 
1995). The nodal unknowns of pore liquid pressure 
uw, pore gas pressure ua and displacement u  
appear in all equations making the problem fully 
coupled. This non linear system must be 
simultaneously solved for the three primary 
unknowns. The dependency of the matrix 
coefficients in Eq. 11 on the primary unknowns 
through constitutive equations requires an iterative 
procedure for solution in each time step. 
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For simplicity, Eq. 11 can also be written in a 
concise matrix form as: 

 

( ) ( ) ( )XFXXCXXK =
∂
∂

+
t

                             (12) 

 
where X  indicates the vector of all nodal unkowns. 



The temporal discretization of Eq. 12 is 
accomplished through an implicit  time difference 
scheme: 
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where matrices K , C and vector F  are a function 
of the primary unknown vector 1+= nXX . The 
solution vector Xn+1 is obtained through the 
iterative Picard algorithm also known as the 
successive substitution algorithm. The Picard 
algorithm is a relative simple iterative method to 
solve non-linear algebraic systems and can be 
illustrated by the following list of steps: 
 
(1) Specify an initial solution X0 
(2) For i=1,2,… do 

(2.1)  compute the coefficient matrix K , C and 
vector F   

(2.2)  solve the linear system Eq. (13) 
(2.3)  check for convergence. If not converged, 

goto (2) 
 

In the above algorithm, step (2.2) is the most 
computational expensive process that is performed 
in each iteration to solve the non-symmetric 
algebraic system of Eq. 13. For this purpose, the 
iterative solver EBE-BiCGSTAB is employed, 
which has proven to deal effectively with non-
symmetric algebraic systems.   

 
 

3. PARALLEL IMPLEMENTATION OF 
ELEMENT-BY-ELEMENT SOLVER 

The parallel solution of the global system of 
equations comprises three components: the 
partition of the task, the solving of a linear system 
by EBE-BiCGSTAB, and the communication 
among the processors. The communications are 
achieved by the Message Passing Interface library 
(MPI). The other two components are discussed in 
the following sections. 

 
3.1 Task partition by domain 
decomposition method 

Here the Domain Decomposition Method 
(DDM) is utilized as a “divide and conquer” 
strategy to partition the computational task into 
some smaller subtasks, and at the same time to 
minimize the communications and to balance the 
loads among the processors. In the DDM the 
physical domain of the finite element model is 

divided into a number of non-overlapping sub-
domains mapped onto different processors of a 
parallel computer. Generally, the number of 
subdomains equals the number of processors in the 
parallel computer. Computational tasks such as the 
calculation of elemental stiffness matrices and 
external force vectors in each sub-domain are 
accomplished on separate processors. There are 
three basic steps for the DDM algorithm. Firstly, 
the global finite element mesh is partitioned into a 
number of sub-domains which are then distributed 
to different processors of parallel computers. The 
graph partition algorithm used in this work is 
“Metis” proposed by Karypis et al. (1998). 
Secondly, the distributed and unassembled global 
system of equation is solved by means of the 
iterative solver BiCGSTAB in conjunction with 
element-by-element methods. Finally, calculated 
results from each processor are collected by the 
master processor where they are processed for 
visualization. 
 
3.2 Element-by-element method 

In the element-by-element method, the global 
system (Eq. 13) is never assembled, a major 
advantage over other iterative solvers in storage 
terms. The most important part of the EBE method 
is the implementation of the matrix-vector 
multiplication. This can be described as follows.  

Let Ae be the elemental matrix, xe the elemental 
vector, A be the global matrix, x the global vector. 
Then the global matrix-vector product Ax can be 
formulated at the elemental level by the following 
equation. 
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where Be is a Boolean connectivity matrix which 
maps the entries of the elemental matrix into the 
global matrix. By this way the global matrix-vector 
product Ax can be represented by operations at the 
element level Aexe. 
 
3.3 The EBE- BiCGSTAB  algorithm 

The BiCGSTAB algorithm is a Krylov subspace 
iterative method for solving a large non-symmetric 
linear system of equations. A typical algorithm is 
presented as follows, (Barrett et al., 1994).  
Given A, b and x0, solve x 
i=0 
r1 = b - A * x       (using EBE methods) 
r0 = r1 



Do 
       i=i+1 
       ρ1 = r0

T r1  
       if (i == 1)          p = r1; 
       else  
          β = (ρ1/ ρ2) * (α/ω) 
          p = r + (p - v* ω) *β 
     endif 
     M z= p 
     v = A z                  (using EBE methods) 
     α =ρ1 / (r0 v) 
     s = r1 -  v *α 
     check convergence, if converged 
       x = x + z*α 
     endif 
     M z1= s 
      t = A* z1               (using EBE methods) 
      ω = (t * s) / (t*t)  
     x =  x + z *α+  z1*ω 
    r = s - t *ω 
     ρ2 =ρ1 
      check convergence, continue if necessary 
End 

 
It can be seen that the most time-consuming 

parts of the algorithm are inner products, vector 
updates, matrix-vector products (commented int the 
above algorithm), and preconditioner solves. To 
compute an inner product of two vectors in parallel, 
each processor first computes the inner product of 
its own part, and then values on the boundaries 
between subdomains have to be exchanged with 
neighbouring processors to calculate the global 
inner product. This step therefore requires 
communication.  

For vector updates, each processor updates its 
own segment. Preconditioning is often the most 
problematic part of parallelizing an iterative 
method. In this study, the diagonal proconditioner 
is chosen in view of its ease to implement and 
parallelize. In this case the preconditioning matrix 
M is M = diag(A).  

 
 

4. NUMERICAL EXAMPLES 
4.1 The parallel computer and 
performance analysis methods 

The parallel computer used is a Linux cluster 
called Hamilton at Durham University which 
consists of 96 dual-processor dual-core Opteron 2.2 
GHz nodes with 8 GBytes of memory and a 
Myrinet fast interconnect for running MPI code, 
and 135 dual-processor Opteron 2 GHz nodes with 

4 GBytes of memory and a Gigabit interconnect. 
The operating system is SuSE Linux 10.0 (64-bit). 
The system has 3.5 Terabytes of disk storage. 

To analysis the performance of the algorithm, 
we need to define speedup and efficiency. Let t1 be 
the time to execute a given problem with one 
processor, and tp the time needed to execute the 
same problem with p processors. Then the speedup 
is the ratio of the single processor CPU time over 
CPU time of p processors. 

 
pttS p 1=                                                          (15) 

 
The efficiency is defined as the speedup ratio 

over the number of processors used (p),  
 ( )ppttppSpE 1==                                        (16) 

 
4.2 Serial computation 

The finite element code described in Section 2 
has been validated by simulating the drainage 
experiment described by Liakopoulos (1965), 
which is often used as a reference case for 
assessing the performance of finite element codes 
in unsaturated soils (see, for example, Lewis & 
Schrefler 1998). The validation of the finite 
element code has been carried out by means of a 
serial computation performed on a single processor.  

Liakopulos experiment is a simple test 
involving drainage of a 1m high column of Del 
Monte sand initially saturated and subjected to an 
uniform flow field with a supply of water to the top 
surface and free drainage from the bottom surface. 
At t=0, the water supply to the top surface is 
stopped while maintaining free drainage from the 
bottom surface. Mechanical equilibrium under self 
weight is also assumed at t=0 together with a null 
value of suction throughout the sample. The 
boundary conditions imposed during drainage are 
as follows: on the bottom surface horizontal and 
vertical displacements are restrained while 
atmospheric air and water pressures are imposed; 
on the top surface null load and null water flow are 
imposed while air pressure is maintained at 
atmospheric value; on the lateral surface water and 
air flow are null and horizontal displacements are 
restrained. The constitutive relationships and model 
parameters adopted in this work are the same as 
those presented by Lewis & Schrefler (1998). 
 
 
 
 



Table 1. Material parameters for the drainage test. 
Parameter value 
Young’s modulus(E)  1.3MPa 
Poisson’s ratio (ν)  0.4 
Initial porosity (n) 0.2975 
Water density (ρw) 1000 kg m-3 
Intrinsic permeability (k) 4.5×10-13 m2 
Water viscosity (µa) 1.0×10-3 Pa s 
Air viscosity (µw) 1.8×10-5 Pa s 
 

The degree of saturation is described by: 
 

4279.211109722.11 sSr
−×−=                             (17) 

 
Water elative permeability also is a function of  

degree of saturation, valid for 91.0≥rS , is: 
 

( ) 0121.11207.21 rSrwk −−=                                 (18) 

 
The relative permeability of air, kra , is a 

function of the degree of saturation and given by: 
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For the serial simulations, the model is divided 

into 20 8-node isoperimetric elements. A 10 
seconds time-step is applied. A calculation of 720 
time steps, i.e. 120 minutes was performed. The 
variation of suction and vertical displacements at 
5mins, 10mins, 20mins, 30mins, 60mins, and 
120mins are shown in Fig. 2 and Fig. 3. 
 
4.3 4.3 Parallel computational results 

A larger mesh than in the previous case has 
been used to investigate the performance of the 
parallel computation. Such mesh consists of 300 
elements and is decomposed in 6 subdomains as 
shown in Fig. 1(b).  A calculation of 120 time steps 
of 1min each, i.e. 120 minutes, has been performed. 
To assess the parallel performance of the code, the 
same analysis described in section 4.2 has been 
carried out by using 1, 2, 4, 6, 8, 15, and 20 
processors. The CPU time for each of these 
computations was recorded and the relationships 
between number of processors and CPU time, 
speedup, efficiency are shown in Figs. 4, 5 and 6. 
Inspection of Fig. 4 indicates that when a single 

processor is used the CPU time is 4605s whereas, 
when 20 processors are used, the CPU time drops 
to 478s. Inspection of Fig. 6 indicates that the 
maximum efficiency is achieved with 8 processors 
and this is therefore the optimal number of 
processors for this particular model. When the 
number of processors increases above 8 the 
efficiency deteriorates. This is due to the increase 
of data exchange between processors and the 
consequent increase in the amount of time spent in 
communication among nodes, which offsets the 
benefit of employing additional processors. 
 

                            
Figure 1. The finite element model and mesh (a) 
A mesh with 20 8-node isoparametric elements (b) 
Domain decomposition of a mesh with 300 
elements and 6 subdomains. 
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Figure 2. Profile of suction. 
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Figure 3. Profile of vertical displacements. 
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Figure 4. CPU time for different numbers of 
processors used. 
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Figure 5. Speedup for different numbers of 
processors used. 
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Figure 6. Efficiency for different numbers of 
processors used. 
 
 
5. CONCLUSIONS 

A parallel finite element code for unsaturated 
soils using domain decomposition and an element-

by-element iterative solver has been presented. By 
running the code on a Linux cluster of parallel 
computers, good levels of speedup and efficiency 
have been achieved. Given the small scale of the 
boundary value example analysed in this paper, a 
maximum number of 20 processors has been used. 
It is envisaged that the code will be applied to 
larger computations in the next future where a 
greater number of processors will be employed. 
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