
PARALLEL COMPUTING OF UNSATURATED SOILS USING ELEMENT-BY-ELEMENT
AND DOMAIN DEOMPOSITON METHODS

Youliang Zhang, Domenico Gallipoli & Charles Augarde
School of Engineering, Durham University, U.K.

Abstract: The finite element (FE) simulation of large scale boundary value problems in unsaturated soils is
particularly time-consuming owing to the complex properties of the unsaturated porous media. To speed up
analyses, a parallel FE code has been developed in this work by using C++ and MPI running on a Linux
parallel computer cluster. The “Divide and Conquer” strategy has been used to partition the task among the
processors with minimum data exchanges and load balancing. The linear system of equations was solved
using the iterative solver BiCGSTAB incorporated within an element-by-element method. One serial and one
parallel calculation are presented to validate the code and to test the parallel performance the algorithm.

1. INTRODUCTION

Understanding the behaviour of unsaturated
soils is important for many geotechnical
applications in natural soil deposits (where the
water table is at some depth below ground surface)
as well as in compacted soils used as fill material.
The accurate analysis of unsaturated soils by the
finite element methods requires consideration of
the physical coupling among three phases, i.e. the
gas, liquid and solid phases. However, the highly
nonlinear nature of the governing differential
equations and the presence of air pressure as an
additional nodal unknown, make computations
expensive. Besides, most geotechnical problems
cannot be accurately studied in two dimensions and
they need instead three-dimensional models. Such
features increase the amount of computation
beyond the capabilities of any single personal
computer. Alternative approaches are therefore
required such as parallel computing by using a
cluster of computers working simultaneously.

The choice of a parallel strategy is crucial in
order to achieve high performance in terms of
efficiency and extensibility. A parallel frontal
technique was used (Thomas et al. 1998) to reduce
computational time in multi-physics problems.
However, direct methods lead to fill-in, which
makes expensive to solve and difficult to
parallelize large sparse linear systems and they are
therefore being progressively replaced by iterative
methods. Among iterative solvers, the element-by-
element (EBE) method is one of the most attractive
due to its economy in storage and the ease to
implement. The EBE was introduced by Hughes et
al (1983) and Ortiz et al (1983). This paper
describes a parallel finite element code for coupled
multi-physics problems in unsaturated soils
developed by using Domain Decomposition
Methods (DDM) and an EBE iterative solver.

2. UNSTURATED SOILS SIMULATIONS
2.1 Governing eqations for unsaturated
soils

Unsaturated soil is a three-phase porous
medium consisting of solid grains, pore liquid and
pore gas. In this work it is assumed that the gas
phase only contains air whereas the liquid phase
contains liquid water and dissolved. The coupled
study of water flow, air flow and mechanical
equilibrium requires the statement of governing
differential equations as well as constitutive
relationships between physical variables and
primary unknowns. The mass balance of water
flow leads to the following equation:

() 0=+
∂

∂
ww

wr div
t

nS
vρ

ρ
 (1)

The mass balance of air flow within the gas phase
as well as in the liquid phase (i.e. in the form of
dissolved air) leads to the following equation:

()[] ()[] 01 =+⋅∇++−
∂
∂

waarra HHSSn
t

vvρρ (2)

The mechanical equilibrium leads to the following
equation expressed in terms of net stress

aijijij uδσσ −=* and pore gas pressure au :

0,,
* =++ iiajij buσ (3)

In the above equations, n is porosity, rS is the
liquid degree of saturation, wρ and aρ are the

water and air density respectively, wv and av are
the liquid and gas flux vectors respectively, H is
Henry’s constant of solubility of dry air in water,

des0cea
Text Box
Presented at the 3rd Asian Conf. on Unsaturated Soils, Nanjing, China, 2007

ijσ is the total stress, ijδ is the Kronecker delta

and ib is the body force.
The above governing equations can be re-

formulated in terms of the primary unknowns of
displacement, pore gas pressure and pore liquid
pressure by using a set of constitutive equations
introduced in the following section. Besides, initial
conditions of displacement, pore gas pressure and
pore liquid pressure need to be specified at time
t=0 over the full soil domain. The boundary
conditions can be specified either as imposed
values on nodes or as fluxes on the boundary.

2.2 Constitutive equations

It is assumed that the air behaves as an ideal gas
obeying the following law:

()atmaa pu
TR
M

+=ρ (4)

where T is the absolute temperature, R is the gas
constant, M is the molecular weight of air and

atmp is the atmospheric pressure (note that pore gas
pressure, pore liquid pressure and stresses are all
relative to the atmosphere in this formulation).

The liquid and gas fluxes, vw and va are given
by the generalized multiphase Darcy’s law as:

()ww
w

rw
w uk γkv +∇−=

µ
 (5)

()aa
a

ra
a uk γkv +∇−=

µ
 (6)

where k is the intrinsic permeability tensor, wγ
and aγ are the specific weights, rwk and rak are
the relative permeabilities and aµ and wµ are the
viscosities (the subscripts a and w refer to the
gaseous and liquid phases respectively). The values
of relative permeabilities range from 0 to 1, and are
assumed to be nonlinear functions of the degree of
saturation.

The degree of saturation is a unique function of
net stress ij

*σ and suction wa uus −= through a
water retention relationship such as:

()sfS ijr ,*σ= (7)
The following elastic relationship is adopted
between the “average soil skeleton stress”, whose

definition is)(sSu raijijij −−= δσσ , and the strain

klε :

klijklij εσ dd D= (8)

where ijklD is the elastic stiffness tensor.
The above equation can also be rewritten in terms
of net stress and suction as:

()shklklijklij ddd * −= εσ D (9)

where:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −

r
r

ijklijkl S
s

S
sh

d
d1 δD (10)

A linear elastic relationship is assumed between

average soil skeleton stress and strain so the
stiffness tensor D is independent of stress state.

2.3 Time and spatial discretisation

Spatial discretization by the Galerkin finite
element method of Eqs. 1, 2 and 3 and the relevant
constitutive relationships yield the algebraic system
given in Eq. 11, whose matrix and vector
coefficients are discussed in detail in (Gens et al.
1995). The nodal unknowns of pore liquid pressure
uw, pore gas pressure ua and displacement u
appear in all equations making the problem fully
coupled. This non linear system must be
simultaneously solved for the three primary
unknowns. The dependency of the matrix
coefficients in Eq. 11 on the primary unknowns
through constitutive equations requires an iterative
procedure for solution in each time step.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
∂

∂

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂
∂

∂
∂
∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w

a

u

w

a

wwwgwu

gwgggu

uwuguu

a

ww

gwgg
t

t

t
f
f

f

u

u
t
u

CCC
CCC
CCC

u
u
u

K
KK

w00
0

000

(11)

For simplicity, Eq. 11 can also be written in a
concise matrix form as:

() () ()XFXXCXXK =
∂
∂

+
t

 (12)

where X indicates the vector of all nodal unkowns.

The temporal discretization of Eq. 12 is
accomplished through an implicit time difference
scheme:

[] 11 ++ ∆+=∆+ nnn tt FCXXKC (13)

where matrices K , C and vector F are a function
of the primary unknown vector 1+= nXX . The
solution vector Xn+1 is obtained through the
iterative Picard algorithm also known as the
successive substitution algorithm. The Picard
algorithm is a relative simple iterative method to
solve non-linear algebraic systems and can be
illustrated by the following list of steps:

(1) Specify an initial solution X0
(2) For i=1,2,… do

(2.1) compute the coefficient matrix K , C and
vector F

(2.2) solve the linear system Eq. (13)
(2.3) check for convergence. If not converged,

goto (2)

In the above algorithm, step (2.2) is the most
computational expensive process that is performed
in each iteration to solve the non-symmetric
algebraic system of Eq. 13. For this purpose, the
iterative solver EBE-BiCGSTAB is employed,
which has proven to deal effectively with non-
symmetric algebraic systems.

3. PARALLEL IMPLEMENTATION OF
ELEMENT-BY-ELEMENT SOLVER

The parallel solution of the global system of
equations comprises three components: the
partition of the task, the solving of a linear system
by EBE-BiCGSTAB, and the communication
among the processors. The communications are
achieved by the Message Passing Interface library
(MPI). The other two components are discussed in
the following sections.

3.1 Task partition by domain
decomposition method

Here the Domain Decomposition Method
(DDM) is utilized as a “divide and conquer”
strategy to partition the computational task into
some smaller subtasks, and at the same time to
minimize the communications and to balance the
loads among the processors. In the DDM the
physical domain of the finite element model is

divided into a number of non-overlapping sub-
domains mapped onto different processors of a
parallel computer. Generally, the number of
subdomains equals the number of processors in the
parallel computer. Computational tasks such as the
calculation of elemental stiffness matrices and
external force vectors in each sub-domain are
accomplished on separate processors. There are
three basic steps for the DDM algorithm. Firstly,
the global finite element mesh is partitioned into a
number of sub-domains which are then distributed
to different processors of parallel computers. The
graph partition algorithm used in this work is
“Metis” proposed by Karypis et al. (1998).
Secondly, the distributed and unassembled global
system of equation is solved by means of the
iterative solver BiCGSTAB in conjunction with
element-by-element methods. Finally, calculated
results from each processor are collected by the
master processor where they are processed for
visualization.

3.2 Element-by-element method

In the element-by-element method, the global
system (Eq. 13) is never assembled, a major
advantage over other iterative solvers in storage
terms. The most important part of the EBE method
is the implementation of the matrix-vector
multiplication. This can be described as follows.

Let Ae be the elemental matrix, xe the elemental
vector, A be the global matrix, x the global vector.
Then the global matrix-vector product Ax can be
formulated at the elemental level by the following
equation.

()[]∑∑
==

=⎟
⎠

⎞
⎜
⎝

⎛
=

n

e
ee

T
e

n

e
ee

T
e

11
xABxBABAx (14)

where Be is a Boolean connectivity matrix which
maps the entries of the elemental matrix into the
global matrix. By this way the global matrix-vector
product Ax can be represented by operations at the
element level Aexe.

3.3 The EBE- BiCGSTAB algorithm

The BiCGSTAB algorithm is a Krylov subspace
iterative method for solving a large non-symmetric
linear system of equations. A typical algorithm is
presented as follows, (Barrett et al., 1994).
Given A, b and x0, solve x
i=0
r1 = b - A * x (using EBE methods)
r0 = r1

Do
 i=i+1
 ρ1 = r0

T r1
 if (i == 1) p = r1;
 else
 β = (ρ1/ ρ2) * (α/ω)
 p = r + (p - v* ω) *β
 endif
 M z= p
 v = A z (using EBE methods)
 α =ρ1 / (r0 v)
 s = r1 - v *α
 check convergence, if converged
 x = x + z*α
 endif
 M z1= s
 t = A* z1 (using EBE methods)
 ω = (t * s) / (t*t)
 x = x + z *α+ z1*ω
 r = s - t *ω
 ρ2 =ρ1
 check convergence, continue if necessary
End

It can be seen that the most time-consuming

parts of the algorithm are inner products, vector
updates, matrix-vector products (commented int the
above algorithm), and preconditioner solves. To
compute an inner product of two vectors in parallel,
each processor first computes the inner product of
its own part, and then values on the boundaries
between subdomains have to be exchanged with
neighbouring processors to calculate the global
inner product. This step therefore requires
communication.

For vector updates, each processor updates its
own segment. Preconditioning is often the most
problematic part of parallelizing an iterative
method. In this study, the diagonal proconditioner
is chosen in view of its ease to implement and
parallelize. In this case the preconditioning matrix
M is M = diag(A).

4. NUMERICAL EXAMPLES
4.1 The parallel computer and
performance analysis methods

The parallel computer used is a Linux cluster
called Hamilton at Durham University which
consists of 96 dual-processor dual-core Opteron 2.2
GHz nodes with 8 GBytes of memory and a
Myrinet fast interconnect for running MPI code,
and 135 dual-processor Opteron 2 GHz nodes with

4 GBytes of memory and a Gigabit interconnect.
The operating system is SuSE Linux 10.0 (64-bit).
The system has 3.5 Terabytes of disk storage.

To analysis the performance of the algorithm,
we need to define speedup and efficiency. Let t1 be
the time to execute a given problem with one
processor, and tp the time needed to execute the
same problem with p processors. Then the speedup
is the ratio of the single processor CPU time over
CPU time of p processors.

pttS p 1= (15)

The efficiency is defined as the speedup ratio

over the number of processors used (p),
 ()ppttppSpE 1== (16)

4.2 Serial computation

The finite element code described in Section 2
has been validated by simulating the drainage
experiment described by Liakopoulos (1965),
which is often used as a reference case for
assessing the performance of finite element codes
in unsaturated soils (see, for example, Lewis &
Schrefler 1998). The validation of the finite
element code has been carried out by means of a
serial computation performed on a single processor.

Liakopulos experiment is a simple test
involving drainage of a 1m high column of Del
Monte sand initially saturated and subjected to an
uniform flow field with a supply of water to the top
surface and free drainage from the bottom surface.
At t=0, the water supply to the top surface is
stopped while maintaining free drainage from the
bottom surface. Mechanical equilibrium under self
weight is also assumed at t=0 together with a null
value of suction throughout the sample. The
boundary conditions imposed during drainage are
as follows: on the bottom surface horizontal and
vertical displacements are restrained while
atmospheric air and water pressures are imposed;
on the top surface null load and null water flow are
imposed while air pressure is maintained at
atmospheric value; on the lateral surface water and
air flow are null and horizontal displacements are
restrained. The constitutive relationships and model
parameters adopted in this work are the same as
those presented by Lewis & Schrefler (1998).

Table 1. Material parameters for the drainage test.
Parameter value
Young’s modulus(E) 1.3MPa
Poisson’s ratio (ν) 0.4
Initial porosity (n) 0.2975
Water density (ρw) 1000 kg m-3
Intrinsic permeability (k) 4.5×10-13 m2
Water viscosity (µa) 1.0×10-3 Pa s
Air viscosity (µw) 1.8×10-5 Pa s

The degree of saturation is described by:

4279.211109722.11 sSr
−×−= (17)

Water elative permeability also is a function of

degree of saturation, valid for 91.0≥rS , is:

() 0121.11207.21 rSrwk −−= (18)

The relative permeability of air, kra , is a

function of the degree of saturation and given by:

()
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−= 3
5

11 2
eSeSrak ,

2.01

2.0

−

−
= rS

eS (19)

For the serial simulations, the model is divided

into 20 8-node isoperimetric elements. A 10
seconds time-step is applied. A calculation of 720
time steps, i.e. 120 minutes was performed. The
variation of suction and vertical displacements at
5mins, 10mins, 20mins, 30mins, 60mins, and
120mins are shown in Fig. 2 and Fig. 3.

4.3 4.3 Parallel computational results

A larger mesh than in the previous case has
been used to investigate the performance of the
parallel computation. Such mesh consists of 300
elements and is decomposed in 6 subdomains as
shown in Fig. 1(b). A calculation of 120 time steps
of 1min each, i.e. 120 minutes, has been performed.
To assess the parallel performance of the code, the
same analysis described in section 4.2 has been
carried out by using 1, 2, 4, 6, 8, 15, and 20
processors. The CPU time for each of these
computations was recorded and the relationships
between number of processors and CPU time,
speedup, efficiency are shown in Figs. 4, 5 and 6.
Inspection of Fig. 4 indicates that when a single

processor is used the CPU time is 4605s whereas,
when 20 processors are used, the CPU time drops
to 478s. Inspection of Fig. 6 indicates that the
maximum efficiency is achieved with 8 processors
and this is therefore the optimal number of
processors for this particular model. When the
number of processors increases above 8 the
efficiency deteriorates. This is due to the increase
of data exchange between processors and the
consequent increase in the amount of time spent in
communication among nodes, which offsets the
benefit of employing additional processors.

Figure 1. The finite element model and mesh (a)
A mesh with 20 8-node isoparametric elements (b)
Domain decomposition of a mesh with 300
elements and 6 subdomains.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0200040006000800010000
suction (Pa)

he
ig

ht
 (m

)

5min
10min
20min
30min
60min
120min

Figure 2. Profile of suction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
displacement (mm)

he
ig

ht
 (m

5min
10min
20min
30min
60min
120min

Figure 3. Profile of vertical displacements.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18 20 22

Number of processors

El
ap

se
d

tim
e

(s
)

Figure 4. CPU time for different numbers of
processors used.

0

2
4

6
8

10
12

14
16

18
20

22

0 2 4 6 8 10 12 14 16 18 20 22

Number of processors

sp
ee

du
p

Figure 5. Speedup for different numbers of
processors used.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22

Number of processors

Ef
fic

ie
nc

yp

Figure 6. Efficiency for different numbers of
processors used.

5. CONCLUSIONS

A parallel finite element code for unsaturated
soils using domain decomposition and an element-

by-element iterative solver has been presented. By
running the code on a Linux cluster of parallel
computers, good levels of speedup and efficiency
have been achieved. Given the small scale of the
boundary value example analysed in this paper, a
maximum number of 20 processors has been used.
It is envisaged that the code will be applied to
larger computations in the next future where a
greater number of processors will be employed.

REFERENCES
Barrett, R., Berry, M., Chan, T.F., Demmel, J.,

Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C. and Van der Vorst, H. 1994.
Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. 2nd
Edition, Philadelphia: SIAM.

Gens, A., Jouanna, P., and Schrefler, B.A. 1995.
Modern issues in non-saturated soils. CISM
course and Lectures No.357, New York:
Springer-Verlag.

Hamilton cluster http://hamilton.dur.ac.uk/
Hughes, T.J.R., Levit, I. and Winget, J. 1983. An

element-by-element solution algorithm for
problems of solid and structural mechanics.
Computer Methods in Applied Mechanics and
Engineering 36: pp. 241-254.

Karypis, G. and Kumar, V. 1998. Multilevel k-way
partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing
48(1): pp. 96-129.

Lewis, R.W. and Schrefler, B.A. 1998. The Finite
Element Method in the Static and Dynamic
Deformation and Consolidation of Porous
Media. 2nd Edition, Chichester: John Wiley.

Liakopoulos, A.C. 1965. Transient flow through
unsaturated porous media. Ph.D. Thesis,
University of Berkely, California.

Ortiz, M., Pinsky, P.M. and Taylor, R.L. 1983.
Unconditionally Stable Element-By-Element
Algorithms for Dynamic Problems. Computer
Methods in Applied Mechanics and Engineering
36 (2): pp. 223-239.

Saad, Y. 1996. Iterative methods for sparse linear
systems. Boston: PWS..

The Message Passing Interface (MPI) standard.
http://www-unix.mcs.anl.gov/mpi/

Thomas, H.R., Yang, H.T., He, Y. and Jefferson,
A.D. 1998. Solving coupled thermo-hydro-
mechanical problems in unsaturated soil using
a substructuring Frontal technique.
Communications in Numerical Methods in
Engineering 14(8): pp. 783-792.

