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FINITE ELEMENT LIMIT ANALYSIS OF PASSIVE
EARTH RESISTANCE IN COHESIONLESS SOILS
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ABSTRACT

This note examines the classic passive earth resistance of cohesionless soil by using two newly developed numerical
procedures based on finite element formulations of the bound theorems of limit analysis and non-linear programming
techniques. Solutions using upper and lower bounds are presented to complement the previous studies of this problem.
The parameters studied are soil-wall interface friction, wall inclination, backfill surface configuration and the wall’s

weight.
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INTRODUCTION

Passive resistance calculation is required for the design
of many geotechnical structures such as retaining walls,
sheet piles, bridge abutments, anchor blocks, and group
pile caps. Factors that affect the magnitudes of passive
pressures have been reviewed recently in Duncan and
Mokwa (2001). The most influential parameters for rigid
walls are considered to be wall movement, interface fric-
tion and adhesion, and wall shape. Traditional analytical
approaches, such as those attributed to Rankine and
Coulomb and the Log-Spiral method can cope with
some, but not all of these parameters.

The Rankine method assumes a smooth wall and the
resultant passive force is inclined at an angle equal to the
angle of surface inclination behind the wall. In
Coulomb’s approach, the soil-wall friction angle is as-
sumed to take a value between zero and the internal fric-
tion angle of the backfill material. Simple equilibrium is
used to determine the resulting passive force. Both
methods are developed for granular material and are
based on the assumption of plane failure surfaces.
However, it is generally recognised that the assumption
of a plane failure surface is not reasonable for rough
walls. This is especially so for passive cases in which,
Coulomb’s method may give increasingly unconservative
(i.e., unsafe) predictions as the value of soil-wall friction
angle increases. To reduce this shortcoming, the Log-
Spiral method was developed (Terzaghi, 1943; Terzaghi
et al., 1996). Caquot and Kerisel (1948) produced tables
and charts of passive pressure coefficients based on this

method for cohesionless soil and simple geometries. Dun-
can and Mokwa (2001) have also recently developed an
Excel spreadsheet computer program based on the Log-
Spiral method which can accommodate both cohesive
and frictional soils, although it is restricted to level
ground, a vertical wall, a uniform surcharge, and
homogeneous soil. Although conventional displacement
finite element (FE) analysis can be used to predict the pas-
sive resistance of soils (e.g., Potts and Fourie, 1986; Day
and Potts, 1998) these estimates are not rigorous bounds
on the true value.

The upper and lower bound theorems of classical plas-
ticity provide rigorous solutions to many problems in
geomechanics. Detailed expositions are contained in
many references, e.g., Chen (1975). New solutions using
the analytical (i.e., non-numerical) upper bound method
for estimating passive earth pressure continue to appear
in the literature (Soubra and Macuh, 2002). However,
since the solution obtained depends on the failure
mechanism chosen for the problem, their utility is limited
unless a large number of mechanisms are investigated.

To give confidence in the accuracy of the solutions ob-
tained from upper bound calculations, it is desirable to
perform lower bound calculations in parallel so that the
true result can be bracketed from above and below. Un-
fortunately, due to the difficulty in constructing statically
admissible stress fields in lower bound analysis, this is
rarely done in practice. To overcome the difficulty, Lys-
mer (1970) formulated the lower bound theorem as a ra-
tional method for electronic computation. It was devel-
oped as a standard linear programming problem and can
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be solved by the Simplex method, which is described in
most linear programming textbooks. The method can be
used for problems involving arbitrary geometry and
stress boundary conditions, but its application is limited.
As stated in Lysmer (1970), the method was not always
stable. Anderheggen and Knopfel (1972) also developed a
numerical procedure, using triangular finite elements and
linear programming, to determine the ultimate load of
plate structures using both upper and lower bound ap-
proaches. The aim was to minimise and maximise a load
factor A.

Following this early work, Sloan (1988, 1989), Sloan
and Kleeman (1995), and Lyamin and Sloan (2002a,
2002b) introduced finite element and mathematical
programming formulations that permit large two-dimen-
sional problems to be solved efficiently on a standard per-
sonal computer. These techniques have removed the need
to search for accurate upper bound mechanisms and stat-
ically admissible stress fields analytically. The techniques
have been used successfully to predict the bearing capaci-
ty of layered soils (Shiau et al., 2003), the load capacity of
soil anchors (Merifield et al., 2003; Merifield et al., 2005),
the stability of tunnels (Sloan and Assadi, 1991), the be-
haviour of foundations under combined loading (Ukrit-
chon et al., 1998), the bearing capacity of three-dimen-
sional foundations (Salgado et al., 2004; Lyamin et al.,
2007), and the formation of sinkholes (Augarde et al.,
2003). In this paper, we apply the finite element bound
methods to the classical passive earth pressure problem.

PROBLEM DEFINITION AND SOLUTION
TECHNIQUES

The passive earth pressure problem considered in this
paper is illustrated in Fig. 1. A rigid retaining wall of
height H is subjected to a horizontal force that pushes it
into the soil. The back of the wall has an angle « to the
horizontal and the surface of the backfill slopes at S to the
horizontal. The soil is taken to be a cohesionless (¢’ =0)
material with unit weight y. A fully drained condition is
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adopted throughout.

It is convenient to use a value of soil-wall friction angle
J to represent wall roughness. For cohesionless soil, d =0
models a perfectly smooth wall while d =¢’indicates a
perfectly rough wall. The total passive thrust acting on
the wall, P,, is defined in terms of a passive earth pressure
coefficient K|, according to

prH2 1

p - 1
)

The line of action of P, is inclined at J to the normal on
the back of the wall. Equation (1) is governed by the geo-
metric parameters o and S, the soil-wall friction angle J,
and the backfill frictional angle ¢’.

Classical limit analysis theory assumes an associated
flow rule, which restricts the direction of plastic flow such
that y’ =¢’. The implicit assumption of an associated
flow rule in the bound theorems has resulted in some de-
bate on their suitability for frictional soils. Although it is
well known that the use of an associated flow rule predicts
excessive dilation during shear failure of such a soil, it is
less clear whether this feature will have a major impact on
the resulting limit load. Indeed, it can be argued that the
flow rule will have a major influence on this quantity only
if the problem is strongly constrained in a kinematic sense
(Davis, 1968). For geomechanics problems which involve
a freely deforming ground surface and a semi-infinite
domain, the degree of kinematic constraint if often low
and it is reasonable to conjecture that the bound the-
orems will give good estimates of the true limit load. It is
also possible to carry out an analysis using a ‘‘residual’’
friction angle to model non-associated behaviour, e.g.,
Shiau et al. (2003) and Michalowski and Shi (1995),
however in this paper all analyses assume associated flow.

The upper bound theorem states that the power dissi-
pated by any kinematically admissible velocity field can
be equated to the power dissipated by the external loads
to give a rigorous upper bound on the true limit load. A
kinematically admissible velocity field is one which satis-
fies compatibility, the flow rule and the velocity boundary

/ potential slip line

yH?K,

P, is assumed to incline at an angle ¢ to the normal of the wall

Fig. 1.

Problem notation and potential failure mechanism
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conditions. In a finite element formulation of the upper
bound theorem, the velocity field is modelled using ap-
propriate variables and the optimum (minimum) internal
power dissipation is obtained as the solution to a mathe-
matical programming problem.

In the formulation of Lyamin and Sloan (2002b), the
upper bound is found by the solution of a nonlinear
programming problem. Their procedure uses linear trian-
gles to model the velocity field, and each element is also
associated with a constant stress field and a single plastic
multiplier rate. The element plastic multipliers do not
need to be included explicitly as variables, however, even
though they are used in the derivation of the formulation.
This is because the final optimisation problem can be cast
in terms of the nodal velocities and element stresses
alone. To ensure kinematic admissibility, flow rule con-
straints are imposed on the nodal velocities, element plas-
tic multipliers, and element stresses. In addition, the
velocities are matched to the specified boundary condi-
tions, the plastic multipliers are constrained to be non-
negative, and the element stresses are constrained to satis-
fy the yield criterion.

Figure 2 shows a typical finite element mesh for upper
bound limit analysis of the problem considered. This
mesh comprises 6765 nodes, 2349 triangular elements,
and 3325 velocity discontinuities. The bottom and right
hand edges of the upper bound meshes used in this study
are fixed since it is assumed that the failure mechanism is
contained within. This condition is checked for each case
and in some instances larger meshes are necessary to en-
sure that the optimal failure mechanism is captured cor-
rectly.

An upper bound solution is obtained by prescribing a
unit horizontal translation (¥ = + 1) into the soil adjacent
to the wall to induce passive failure. To consider the effect
of the soil-wall interface, those nodes on the interface
boundary are given a different material property from the

rigid finite element for the structure

interface friction angle 0
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one adopted for the backfill sand. The upper bound on
the passive forces P, is obtained by equating the power
expended by the external loads to the power dissipated in-
ternally by plastic deformation. The passive earth pres-
sure coefficients K, are then found by direct substitution
in Eq. (1).

The lower bound limit theorem states that if any
equilibrium state of stress can be found which balances
the applied loads and satisfies the yield criterion as well as
the stress boundary conditions, then the body will not
collapse. Stress fields that satisfy these requirements, and
thus give lower bounds, are said to be statically admissi-
ble. The key idea behind the lower bound analysis applied
here is to model the stress field using finite elements and
use the static admissibility constraints to express the
unknown collapse load as a solution to a mathematical
programming problem. For linear elements, the
equilibrium and stress boundary conditions give rise to
linear equality constraints on the nodal stresses, while the
yield condition, which requires all stress points to lie in-
side or on the yield surface, gives rise to a nonlinear ine-
quality constraint on each set of nodal stresses. The ob-
jective function, which is to be maximised, corresponds
to the collapse load and is a function of the unknown
stresses.

The lower bound formulation in Lyamin and Sloan
(2002a) incorporates statically admissible stress discon-
tinuities at all interelement boundaries as well as special
extension elements for completing the stress field in an
unbounded domain. Although the stress discontinuities
increase the total number of variables for a fixed mesh,
they also introduce extra ‘‘degrees of freedom’’ in the
stress field, thus improving the accuracy of the solution.
Meshes for the lower bound approach are visually similar
to those for the upper bound approach, though they are
not shown here. There are two material properties adopt-
ed in the analyses; one for the backfill and the other for

zero thickness velocity discontinuities
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the soil-wall interface boundary. To compute the lower
bound, the stress field is optimised in a manner that yields
the largest passive force on the back of the wall. Once the
passive forces are known, the passive earth pressure
coefficients K, are again found by direct substitution in
Eq. (1).

Derivation of the finite element formulations of the up-
per and lower bound theorems are described in detail else-
where (Lyamin and Sloan, 2002a, 2002b) and will not be
repeated here.

RESULTS AND DISCUSSION

Upper bound (UB) and lower bound (LB) estimates of
K, for arigid retaining wall in a cohesionless soil, under a
wide variety of different conditions, are now described.
The study covers variations in geometry and soil-wall in-
terface properties. Using traditional approaches, such a
wide ranging study would be extremely time-consuming
(and probably impossible for the lower bound case).
Where possible, these numerical results are compared to
solutions obtained by others.

Typical Results

Bounds on K, for the case of ¢’ =40° are presented in
Table 1 where they are compared with other available
methods. For a smooth wall (6/¢’ =0), a value for K, of
4.6 is obtained in all methods. As the wall friction is in-
creased, the passive earth pressure coefficients for the nu-
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merical upper and lower bounds increase and the bounds
typically bracket the true estimates within +7% (UB-
LB/2LB). Note that both the Log-Spiral limit
equilibrium methods by Caquot and Kerisel (1948) and
Duncan et al. (2001) predict higher values of K|, than our
numerical UBs except for the fully rough case (6/¢’ =1).
The reason for this discrepancy is not clear, however, the
bounding results give a very clear indication of the true K|,
values. In design practice, the interface friction angle
(wall roughness) is typically one half to two thirds of the
sand friction angle.

Using the same finite element meshes, a wide range of
analyses have been performed for various values of fric-
tion angle ¢’. Numerical results from these analyses are
presented in Table 2 and Fig. 3. In general, the numerical
limit analyses provide excellent estimates of the passive
earth pressure at failure for low soil friction angles, but
the bounding accuracy decreases for cases with ¢’ >40°
and larger values of soil-wall friction angles. Overall, the
numerical results presented in Fig. 3 bracket the true esti-
mates within +10%.

Figure 4 shows the velocity diagrams from UB calcula-
tions for various values of 6/¢’ with ¢’ =35°. The plots
clearly demonstrate the improved passive resistance that
results from increasing the soil-wall friction. They also
show the potential errors inherent in the assumption of a
plane failure surface. Interestingly, a typical Rankine so-
lution (6/¢’ =0) is also obtained in this figure with a
plane failure surface intersecting at an angle of approxi-

Table 1. Results comparison (a=90°, f=0°, ¢’ =40°)
K,=2P,/yH?*=2P, /yH* cos &
/¢’ Coulomb Can<161;)itseaind Llc\)/IgetShpOiEal Sokolovski Upper Bound Uppgr Bound Lowgr Bound
Theory (1948) (Duncan et al., 2001) (1960) (Chen, 1975) This paper This paper
0 4.60 4.59 4.60 4.60 4.60 4.61 (16) 4.60 (16)
1/3 8.15 8.13 8.17 — 7.73 7.79 (20) 6.87 (15)
1/2 11.77 10.36 10.50 9.69 10.08 10.03 (35) 8.79 (17)
2/3 18.72 13.10 13.08 — 13.09 12.87 (60) 11.30 (15)
1 92.72 17.50 17.50 18.20 20.91 20.10 (64) 18.64 (24)
Note: The values in parentheses are CPU time in seconds for a Pentimum IV 2.6 GHz desktop personal computer
Table 2. Passive pressure coefficients (=90°, f=0°)
K,=2P,/yH*=2P, /yH" cos &
o/¢’ ¢’ =20° ¢’ =25° ¢’ =30° ¢’ =35° ¢’ =40° ¢’ =45°
LB UB LB UB LB UB LB UB LB UB LB UB
0 2.04 2.05 2.46 2.48 3.00 3.01 3.70 3.72 4.60 4.62 5.82 5.86
1/3 2.32 2.42 2.93 3.11 3.78 4.10 5.00 5.58 6.87 7.79 9.69 11.41
172 2.50 2.62 3.26 3.48 4.37 4.76 6.08 6.77 8.79 10.03 13.42 15.85
2/3 2.67 2.82 3.59 3.86 5.02 5.49 7.32 8.17 11.30 12.87 19.08 22.03
1 3.02 3.21 4.33 4.70 6.58 7.14 10.99 11.50 18.64 20.10 38.52 45.14

Note: LB andUB are lower and upper bound results
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Fig. 3. Typical upper and lower bound results («=90°, f=0°)
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Fig. 4. Velocity diagrams for various values of /¢’ («=90°, f=0°,
¢’ =35°)

mately 45° — ¢’ /2 to the horizontal backfill. Note that the
results presented here are for heavy walls as vertical
movement is prevented.

A comparison of the distribution of passive earth pres-
sure is shown in Fig. 5. The LB passive pressures are plot-
ted for a backfill friction angle ¢’ =25° with both smooth
walls (solid line) and rough walls (dotted line). Those ob-
tained by the displacement finite element method (Potts
and Fourie, 1986) and the Log-spiral limit equilibrium
method (Caquot and Kerisel, 1948) are also plotted. The
LBs agree well with these methods. Note that, for the
rough wall case, a slightly disparity is observed for the
boundary nodes near the bottom of the wall. Further in-
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Fig. 5. Comparison of horizontal earth pressure distributions on

smooth and rough walls (=90°, f=0°, ¢’ =25°)

vestigation of the developed wall friction (computed as d
=tan~!(t/0) from the lower bound results) along the in-
terface boundary indicates that the soil-wall friction was
not fully developed due to the complex stress condition
near this area. A similar observation is made in Potts and
Fourie (1986).

Effect of Backfill Slope

Recent experimental data on the passive earth pressure
with an inclined surface by Fang et al. (1997) shows that
normalized wall movement S/H (where S is the horizon-
tal wall movement and H is the wall height) required to
reach a passive state increases with an increasing backfill
inclination and that the earth pressure distributions are
essentially linear at each stage of wall movement. The
relationship between the coefficient of horizontal passive
earth pressure K, and the backfill slope angles f are
shown for each stage of wall movement in Fig. 6. Also
plotted in this figure are our numerical bounds. It can be
seen that the bounds agree well with the experimental
data for S/H=0.2, but not with the failure state reported
in their paper. The disparity between the results could be
attributed to the assumption of small strain in the limit
theorems, compared to the large deformations occurring
in the experimental work.

Figure 7 shows the contoured velocity field from the
UB calculations for various values of f. Letting (u, v)
denote the horizontal and vertical velocity components,
the contoured velocity field in Fig. 7 shows the
“resultant’” velocity; i.e., Ju*+ V. Note that the precise
values of the velocity countours are not important, and
are thus not shown in the figure. Notably, the failure sur-
face changes from plane to curved and the proportion of
soil at failure reduces when the angle is increased from
—10° to +20°.

Effect of Wall Inclination

The numerical results above are limited to vertical walls
(@=90°). We now move to inclined walls (i.e., inclined
rear surfaces such as might be found on a gravity wall).
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Fig. 7. Contours of velocity fields for various values of f (a=90°, ¢’
=30.9°, 6=19.2°)

Figure 8 shows UBs and LBs for perfectly smooth and
perfectly rough walls with a=60°, 75°, and 90° and ¢’ =
20°, 30° and 40°. The horizontal passive earth pressure
factor K, , decreases as the angle « is decreased. Con-
sidering the case of a perfectly rough wall with ¢’ =40°,
for example, K, , decreases by a factor of approximately
2 as o is decreased from 90° to 60°. Note that the same
factor is obtained for the case with a perfectly smooth
wall although less passive resistance is expected.

Figure 9 shows the velocity fields for three different
wall inclination angles o= 60°, 75°, and 90° from our up-
per bound analyses. A wall with «=60° leads to the
shortest length of slip and low passive resistance. An in-
crease in « is therefore expected to raise passive resistance
by enlarging the failure mechanism, thus resulting in a
longer slip surface and mobilizing more of the available

a=90°,0/¢" =1
4 pg=0°
12 + upper bound
- lower bound a=175° (3/¢' =1
Kp./l
A a=60°0/¢p" =1
a=90°,6/¢p' =0
a=75,0/¢"=0
a=060°09/¢p" =0
0 ,
20 25 30 35 40

Fig. 8. Upper and lower bound results for studying the effect of wall
inclination (f=0°)

1l
Wall . oveme Min
Movement
a = 60°
Max
Soil
Wall Lo Movement
Movement /
a=75°
Soil
Wall Movement
Movement
a =90°

Fig. 9. Contours of velocity fields for various values of « (§=0°, ¢’ =
40°, 6/¢'=1)

shear strength.

Effect of Wall Weight

Most current practice in the computation of passive
earth pressure asssumes horizontal wall movement only.
In practice, soil adjacent to the wall will move both
horizontally and vertically, and consequently a net shear
force will develop along the soil-wall interface (Duncan
and Mokwa, 2001). The passive force will therefore act at
an angle to the normal of the soil-wall interface bound-
ary. In reality, it is both the vertical component of the
passive force and the body weight of the wall that control
the wall movement. In the case of light wall where its
weight is much smaller than the potential vertical compo-
nent of the passive force, the soil-structure interface an-
gle 6 may not be fully mobilised, possibly resulting in a
situation that both the wall and the soil move together
during the process of failure.

An UB mesh similar to Fig. 2 is used to study this
effect, however, unlike the mesh for the lower bound
analysis, the retaining wall is modelled with rigid ele-
ments and the unit weight of the wall is included in the
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Fig. 11. Effect of soil-wall friction angle on weightless walls

computation. Nodes at the base of the wall are allowed to
move freely in both horizontal and vertical directions so
that the interaction between the wall and the soil can be
modelled.

For the particular case of ¢’ =30.9°, §=19.2°, and «
=90°, Fig. 10 shows that K, , increases by a factor of
roughly 1.7 as the normalized wall weight W./P, , (where
P, . is the pre-estimated passive force in the vertical direc-
tion) is increased from 0 to 1.0. It is clear that more inter-
face friction is mobilised as the body weight of the wall is
increased, causing an increase in the passive resistance.
Therefore, the classical methods that assume a heavy wall
may lead to over-estimates of passive pressure. Note that
the values of K, , for the three backfill angles f=0°, 10°,
and 20° at W./P,,=1.0 are equal to 5.36, 7.64, and
10.60 respectively. These K, , values are very close to
those results previously shown in Fig. 6 where a heavy
wall was assumed. Clearly, the wall moves horizontally
for W.= P, , and the computed passive resistance is the
same as that in the traditional approach.

Finally keeping all other parameters the same, but
modelling a weightless wall (W./P, ,=0) and varying
soil-wall friction leads to the UBs shown in Fig. 11. These
results suggest the wall friction has no effect on the pas-
sive resistance when W./P,,=0. The value of K,

t
Wall
Moveme:
Wc/ P pyv = 0
Wall
Movement|
We/Ppy = 0.5
Max
' Soil /
Wall 3 A Moyement Min
Movement| | /
We/Ppy = 1.0
Fig. 12. Deformed shapes and contours of velocity fields for various

values of W./P, , (=90°, f=0°, ¢’ =30.9°, 6=19.2°)

remains constant as ¢ is increased, indicating that the
shear stresses along the soil-wall boundary cannot be de-
veloped. This effect is also illustrated in Fig. 12 where the
deformed shapes and contours of velocity fields are
shown graphically. As expected, the weight of the wall
has a greater influence on the soil-structure behaviour of
passive walls. The failure mechanism is enlarged as the
value of W./P,,, increases, thus causing an increase in the
passive force. Note also that slippage between the wall
and backfill soil increases as W./P, , is increased, thus
mobilising more of the interface shear force and causing a
curved surface in the failure mechanism.

CONCLUSIONS

Plasticity solutions using finite element upper and low-
er bounds are presented in this note to complement the
previous studies of this problem. Consideration has been
given to the effect of soil-structure interface friction an-
gle, sloping backfill, wall inclination, and the weight of
the retaining structure. Results have been presented as
passive earth pressure coefficients to facilitate their use in
practical designs. Assuming the backfill soil obey an asso-
ciated flow rule, the solutions presented in this paper
bracket the passive earth pressure to within 10% or better
and are thus sufficiently accurate for design purposes.
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