
Timoshenko's cantilever beam problem
A note by Charles Augarde, Durham University, UK.

A widely used mechanics problem with an analytical solution is the cantilever subject to an end load
as described in Timoshenko and Goodier [1]. Many authors have used this problem to demonstrate
the e�ectiveness of an adaptive procedure, however as we point out in our paper [2] if one follows
the original problem speci�ed in [1] then the solution for stresses is smooth and there is no need
for adaptive meshing (the ideal mesh is itself smooth. Unfortunately di�erent papers carry di�erent
statements of the analytical solution, particularly for displacements. Indeed there are some errors in
our paper [2] (although this does not a�ect our argument).

In Timoshenko and Goodier [1] the origin is at the loaded end, y-axis is downwards positive, P
is downwards positive, depth 2c, length L, Insu�cient information is given on �xed end boundary
conditions (it appears fully �xed over the full depth). The displacement solution (u; v) is given as
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In Augarde and Deeks [2] the origin is at the �xed end centre, y-axis is positive upwards, P is positive
downwards, depth D, length L. In the paper we give the following as the displacement solution
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These equations produce the essential boundary conditions speci�ed in example E (Fig. 2) in our
paper.

However, to comply exactly with Timoshenko's solution at the support our equations should be
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This gives an identical displacement solution to Timoshenko. Further con�rmation is provided in
the paper by Most [3] which di�ers only insofar that the load P is positive upwards. Most [3]
however shows the �xed end essential boundary conditions to be pinned at centre and rollers top

and bottom which conicts with the displacement solution, i.e. at (x; y) = (0;
D

2
) Eqn 5 gives a

non-zero horizontal displacement (as opposed to a zero displacement one would associate with a
roller.

The variation in displacements at the �xed support (with a downwards load is shown in Figure 1
which is taken from Zhuang and Augarde [4] and Zhuang et al. [5].
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Figure 1: Zhuang et al. [5]

In Belytschko et al. [6] slightly di�erent coordinate origin is used, i.e. origin is at �xed end but
centered on the lower edge. y-axis upward positive, P downward positive, depth D, length L, at
�xed end it is pinned at lower corner and roller at upper corner:
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Abstract

The exact solution for the deflection and stresses in an end-loaded cantilever is widely used to demonstrate the capabilities of adaptive
procedures, in finite elements, meshless methods and other numerical techniques. In many cases, however, the boundary conditions necessary to
match the exact solution are not followed. Attempts to draw conclusions as to the effectivity of adaptive procedures is therefore compromised.
In fact, the exact solution is unsuitable as a test problem for adaptive procedures as the perfect refined mesh is uniform. In this paper we discuss
this problem, highlighting some errors that arise if boundary conditions are not matched exactly to the exact solution, and make comparisons
with a more realistic model of a cantilever. Implications for code verification are also discussed.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive methods are well-established for analysis of elas-
tostatic problems using finite elements and are now emerging
for meshless methods. Many publications in this area measure
the capability of adaptive procedures by comparison with the
limited number of exact solutions which exist. One of these
problems is that of a cantilever subjected to end loading [1].
The purpose of this paper is to highlight potential sources of
error in the use of this solution relating to the particular bound-
ary conditions assumed and to show that it is a solution nei-
ther appropriate for testing adaptivity nor as a model of a real
cantilever.

While some may consider that the observations we make
are self-evident and well-known, the literature contains many
counter examples. This paper provides graphic illustration of
the effect of various boundary conditions on the cantilever
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beam solution. To our knowledge these effects have not been
presented in detail in the existing literature. We also demon-
strate the difference between the behaviour of a real cantilever
and the idealised Timoshenko cantilever. It is our hope that this
paper will help to reduce the misuse of the Timoshenko can-
tilever beam in the evaluation of adaptive analysis schemes, and
perhaps encourage the use of a more realistic cantilever beam
model as a benchmark problem instead.

2. Problem definition

Fig. 1 shows a cantilever beam of depth D, length L and
unit thickness, which is fully fixed to a support at x = 0 and
carries an end load P. Timoshenko and Goodier [1] show that
the stress field in the cantilever is given by

�xx = P(L − x)y

I
, (1)

�yy = 0, (2)

�xy = − P

2I

[
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4
− y2

]
(3)
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Fig. 1. Coordinate system for the cantilever problem.

and the displacement field {ux, uy} is given by

ux = − Py
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where E is Young’s modulus, � is Poisson’s ratio and I is the
second moment of area of the cross-section.

Crucially [1] states that “ . . . it should be noted that this
solution represents an exact solution only if the shearing forces
on the ends are distributed according to the same parabolic law
as the shearing stress �xy and the intensity of the normal forces
at the built-in end is proportional to y.”

If this is ignored then the solution given by Eqs. (1)–(5) is
incorrect for the ends of the cantilever.

The solution has been widely used to demonstrate adaptive
procedures in finite element methods (e.g. [2–4]), boundary el-
ements (e.g. [5]) and (most commonly) meshless methods (e.g.
[6–12]). However, inspection of Eqs. (1)–(5) shows the stresses
to be smooth functions of position, with no stress concentra-
tions or singularities. Therefore, it would not appear to be a
suitable test for an adaptive procedure where a uniform mesh
or grid is refined to improve accuracy locally to areas of high
gradients in field quantities. Any analysis that yields a non-
smooth field for this problem (and there are many examples in
the literature on adaptivity) is an analysis of a cantilever under
different boundary conditions, for which the exact solution is
incorrect.

The performance of an adaptive procedure is widely mea-
sured using the effectivity index � which is defined for a refined
mesh (or grid) as

� = �∗

�
, (6)

where � is the error estimate based on the difference between
the solution from the fine mesh the coarse mesh, and �∗ is the
error estimate based on the difference between the exact solu-
tion and the coarse mesh [2]. The effectivity index � for the
cantilever problem is meaningless unless the boundary condi-
tions are modelled as specified in [1].

3. Analysis of the Timoshenko and Goodier cantilever

It is not possible to model the cantilever in [1] using
finite elements by applying the stated traction boundary con-
ditions only. In that case the problem is unstable as there is an
unrestrained rotational rigid-body mode. Instead stability and
an accurate model can be achieved by imposing the load as
a parabolically varying shear force at each end according to
Eq. (3) and by applying essential boundary conditions at the
“fixed end” according to Eqs. (4) and (5).

To demonstrate the effects of using different boundary con-
ditions five adaptive analyses of cantilevers have been carried
out. The boundary conditions for each analysis are shown in
Fig. 2 and have been chosen to match the conditions used in var-
ious previous publications. In analysis A full-fixity is applied to
the nodes at the support, while the load P is applied uniformly
distributed over the vertical surface at x = L, e.g. Refs. [2,13].
In analysis B the load is instead distributed parabolically, e.g.
[6]. In analysis C, fixity at the support is released via rollers
above and below the fixed mid-point, e.g. [14–16]. In analysis
D traction boundary conditions are applied at x = 0 to the can-
tilever of analysis C. Finally, analysis E includes parabolic vari-
ation of applied shear traction at x =L with essential boundary

uxuy

Fig. 2. The five different cantilever problems analysed.

Please cite this article as: C.E. Augarde, A.J. Deeks, The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis, Finite Elem. Anal.
Des. (2008), doi: 10.1016/j.finel.2008.01.010

http://dx.doi.org/10.1016/j.finel.2008.01.010


ARTICLE IN PRESS
C.E. Augarde, A.J. Deeks / Finite Elements in Analysis and Design ( ) – 3

conditions at x = 0 to match the solution in Eqs. (4) and (5).
Analysis E is the only one that exactly models the boundary
conditions (traction and essential) of the cantilever in [1] for
which Eqs. (1)–(5) are correct.

4. Numerical results

The behaviours of the cantilevers shown in Fig. 2 have been
studied using conventional adaptive finite element modelling.
In each case the cantilevers are of dimensions D = 2, L = 8
and the applied end load is equivalent to a uniform stress of
1 unit per unit area (i.e. P = 2). The material properties used
are E = 1000 and � = 0.25. Meshes of 8-noded quadrilaterals
were adaptively refined using the Zienkiewicz-Zhu approach
[2] until the energy norm of the error was < 1% of the energy
norm of the solution.
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Fig. 3. Final refined meshes and contours of shear stress for the five cantilever problems analysed.

Fig. 3 shows the final refined mesh for each analysis. Also
shown are the contours of shear stress throughout the can-
tilevers. Of greatest importance here is the result for analysis
E. The refined mesh is uniform because the stress field varies
smoothly and corresponds to the solution in [1]. The other
results are non-uniform due to differences in the boundary con-
ditions imposed. It is clear that unstructured refinement is pro-
duced due to differences in the boundary conditions.

In analysis A, where the load is applied as a uniform shear
traction to the right-hand end, the stress conditions at the top
and bottom right-hand corners change rapidly and cause local
refinement in these regions. This is caused by the incompati-
bility between the boundary conditions for shear at the corners.
The top and bottom faces enforce a zero stress boundary condi-
tion at the corners, while the applied uniform traction enforces
non-zero shear stress boundary conditions at the same places.
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Fig. 5. A realistic model of a cantilever.

When the traction is applied with parabolic variation, yielding
zero shear stress boundary conditions at the corners, local re-
finement in does not occur in these areas. This is demonstrated
by analyses B through E.

In both analysis A and B, where full restraint is provided
to the left-hand end, stress concentrations occur in the top and
bottom left-hand corners, and non-zero vertical stresses occur
over the depth of the beam at the left-hand end. The resulting
shear stress distribution exhibits singularities at the top and
bottom corners. This complex stress field causes a significant
amount of adaptive refinement in this area. Within about D/2 of
the left-hand support, the shear and vertical stress distributions
show little similarity to the Timoshenko solution. Consequently
any attempt to use the Timoshenko solution to evaluate the
accuracy of the adaptive solution in this area will clearly yield
misleading results.

In analysis C, vertical restraint is provided only at the mid-
depth of the beam at the left-hand end, while horizontal restraint
is provided throughout the depth. This removes the vertical
stress component, and improves the agreement of the horizon-
tal stresses with the Timoshenko solution. However, the varia-
tion of the shear stress over this boundary varies considerably
from the Timoshenko problem, and contains a singularity at the
point of vertical restraint. This causes significant refinement in
this area of the beam during the adaptive analysis, and again
considerable difference between the Timoshenko solution and
the correct solution of the problem with these boundary condi-
tions in the area x < D/2.

In analysis D, in addition to the boundary conditions applied
in analysis C, vertical traction equal to the Timoshenko solution
(i.e. varying parabolically) is applied to the right-hand end.
This means that the vertical restraint at the mid-depth serves
simply to stabilise the solution, and carries no vertical load. This
improves the solution considerably, and with a 1% error target
leads to uniform refinement. However, some variation of the
internal shear stress near the support is evident. (This variation
is subtle. The contour lines diverge slightly at the restrained
left-hand end.) Non-zero vertical stresses are also present, and
we have found that as the error target is made more severe,
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Fig. 6. Stress contours and refined meshes for the realistic cantilever problem.

local refinement occurs in this region, and the vertical and shear
stress distributions are notably different from the Timoshenko
solution.

In analysis E, the displacements at the support are prescribed
to agree precisely with the Timoshenko solution. (An alternative
approach would be to provide vertical restraint at the mid-depth
of the beam and horizontal restraints at the top and bottom

corners, then apply horizontal and shear tractions to the end
in accordance with the Timoshenko solution. The final results
would be the same.) In this case the solution converges quickly
to the Timoshenko solution, and there are no regions which
induce preferential refinement of the mesh. This is consistent
with the exact cubic variation of displacement through the depth
of the beam being approximated by quadratic shape functions
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at all cross-sections of the beam. In contrast to analysis D, the
shear stress contours plotted in Fig. 3 are horizontal along the
entire length of the beam.

These observations are confirmed when the stresses at the
support are examined in detail. Fig. 4 shows plots of the three
stress components though the cantilever depth at x=0. The hor-
izontal axis on these plots represents the y-axis in Fig. 1. These
plots demonstrate the agreement between the exact solution of
[1] and analysis E, and the lack of agreement for all other anal-
yses. Notably, when the support is treated as fully fixed, the
horizontal stress distribution varies significantly from the linear
variation of the Timoshenko solution, particularly near the cor-
ners. The most significant differences occur in the shear stress
distribution, indicating that the distribution of shear stress re-
quired to satisfy the Timoshenko assumption does not result
naturally from any conventional boundary conditions, and must
be imposed artificially. Analysis D, when the Timoshenko shear
stress is applied but when the prescribed displacements in the x
direction are not consistent with the Timoshenko solution (and
are instead zero), yields the closest agreement to analysis E.
However, differences in both the vertical and shear stress are
still evident.

The variation of stress through the depth of the beam at
x = L/2 was also investigated, but is not plotted since for all
analyses all three stress components are indistinguishable from
the exact solution, a point discussed further below. This is also
evident from Fig. 3, where the shear stress distribution in the
middle of the beam appears identical in all cases, despite the
variation in boundary conditions at the end, clearly demonstrat-
ing St Venant’s principle.

No attempt to measure effectivity index � is necessary here
since, as explained above, such a measure is meaningless for
analyses A to D inclusive; the true “exact” solution one would
use to determine � is not available. When � has been measured
in previous work, the fact that the exact solution in [1] is in-
compatible with the numerical model is obvious at the supports,
see for instance Fig. 3 of [2].

5. Realistic boundary conditions

In reality, the boundary conditions applied to the cantilevers
in analyses A to E above are never fully realised. The support
is never rigid and could certainly never impose the essential
boundary conditions required to match the Timoshenko can-
tilever in [1]. Equally, realistic loads are unlikely to be the same
as the required traction boundary conditions or indeed applied
as true point loads.

Despite this it is still possible to obtain some agreement with
the exact solution in [1]. Fig. 5 shows a finite element model
of a cantilever that approaches the conditions expected in real-
ity. The essential boundary conditions are no longer imposed
at x = 0 but are modelled as additional elements of the same
stiffness. The load is applied in a more realistic location and
distributed over a small area. All other aspects of this model
match those in analyses A–E above. Fig. 6 shows the stress
results for this model, overlain on the final refined mesh us-
ing the same error criterion as above. At locations away from

the essential and traction boundary conditions, the fields in all
cases are smooth and match the exact solution of [1], much as
was found in analyses A–D. The realistic cantilever shows par-
ticular concentrations of shear stress at the sharp “corners” at
the support, most closely matching the results found here for
analysis A, where the support is fully fixed.

6. Consequences for adaptivity, verification and validation

The analyses A to D presented above, using boundary condi-
tions that do not match the analytical solution of Timoshenko,
can still be used to test adaptive procedures. Comparison can be
made with a fine reference mesh to demonstrate convergence
of an adaptive procedure. However, it should be noted that for
problems with rigid fixities (such as A and B above) the cor-
ner singularites that arise can never be captured precisely by
the reference solution. The use of realistic boundary conditions
described in Section 5 leads to less intensive singularities and
could therefore be regarded as better suited for testing an adap-
tive procedure without using an analytical solution.

Verification and validation (V&V) of computational methods
in science and engineering is an increasingly important con-
cern [17,18] and particularly so in finite element codes [19].
Verification has been described as “solving the equations right”
in which the code is checked for bugs, but more importantly
is checked against analytical solutions where these are avail-
able. Validation checks if the code provides predictions in line
with experimental data, sometimes described as “solving the
right equations”. To end this paper on a positive note, the Tim-
oshenko problem with the boundary conditions correctly mod-
elled clearly provides a means of FE code verification where
an analytical solution is vital (the Method of Exact Solutions).

7. Conclusions

This paper has examined the effect of boundary conditions
on the correct solution for a cantilever beam problem. Repli-
cation of the solution of Timoshenko and Goodier is shown
to require implementation of precise prescribed displacements
(both horizontal and vertical) at the built in end incompatible
with normal support conditions, in addition to application of
vertical load as a shear traction varying parabolically over the
depth. There are many examples in the literature where this
has not been done correctly. This paper has clearly illustrated
the deviations from the Timoshenko solution caused by various
boundary condition combinations used in the literature. When
the boundary conditions are applied correctly, the optimum
mesh or grid for solution of the problem is always uniform. The
Timoshenko and Goodier [1] solution for a cantilever beam is
therefore unsuitable as a test problem for adaptive procedures.
A realistic model of a cantilever which includes a support re-
gion of finite stiffness and the application of load over a finite
area has been presented. Such a model is an ideal benchmark
problem for adaptive analysis, as there are three isolated areas
where the exact stress field varies rapidly, together with an area
where the solution is very smooth. Unfortunately no exact so-
lution is available for this problem, but a very fine solution can
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always be used in place of the exact solution to ascertain the
error level. Such a procedure is far more satisfactory than com-
paring a numerical solution to an exact solution for a problem
with different boundary conditions, as has been done all too
often in the past.
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